TOM 20

ИЮНЬ, 1984

выпуск з

УДК 524.37—36

СОДЕРЖАНИЕ УГЛЕРОДА В ПЛАНЕТАРНЫХ ТУМАННОСТЯХ

А. Ф. ХОЛТЫГИН

Поступила 8 февраля 1983 Принята к печатя 15 декабря 1983

Рассчитаны интенсивности рекомбинационных линий иона С III. По интенсивностим наблюдаемых линий ионов С III. С III, С IV определено содержание ионов С III, С IV. СV и полное содержание углерода в сорока шести планетарных туманностих.

1. В спектрах планетарных туманностей (ПТ) наблюдается большое число линий ионов С II, С III, С IV видимой области спектра. Эти линии, как правило, слабы и имеют, по-видимому, рекомбинационное происхождение. Интенсивности этих линий могут быть использованы для определения содержания соответственно ионов С III, С IV, С V и полного содержания углерода в планетарных туманностях. Преимущество, по сравнению с другими методами, использования для определения содержаний элементов в туманностях интенсивностей рекомбинационных линий состоит в том, что вследствие их слабой зависимости от физических условий они определяются в основном полным содержанием ионов рассматриваемого влемента в туманности.

Переход от интенсивностей к содержаниям элементов требует расчета соответствующих рекомбинационных спектров. Такие расчеты для иона С III проведены в работах [1—2], в которых также показано рекомбинационное происхождение наблюдаемых в ПТ линий С III. Рекомбинационный спектр С IV рассчитан в работе [3]. Интенсивности рекомбинационных линий ионов С II—С IV получены также Пенжелли, некоторые результаты этих расчетов цитируются Ситоном [4], однако в этих расчетах использовались недостаточно точные вероятности переходов, вычисленные методом Бейтса—Дамтаард.

В расчетах [1—2] использованы более точные вероятности, полученные в одноконфигурационном приближении [5].

Эти вероятности в дальнейшем были уточнены переходом от одноконфигурационного к многоконфигурационному приближению в работе [6]. В этой работе для расчета вероятностей переходов использован метод наложения конфигураций [7]. Нами были рассчитаны интенсивности рекомбинационных линий С III с вероятностями, полученными в [6], в частности с учетом запрещенных в одноконфигурационном приближении двух-влектронных переходов. Наблюдение в опектрах многих ПТ линий двух-влектронного перехода С III λ 4156 $(2p3p^3D-2s5f^3F^0)$ [8] указывает на важность учета таких переходов. Результаты расчетов показали, что для уровней с главным квантовым числом n=5, 6 существенны переходы с высоковозбужденных уровней $n \ge 7$. Для учета этих переходов использовалась асимптотика скоростей фоторекомбинации $C_{nl}(T_e) = C_0(T_e)/n^1$, где параметры $C_0(T_e)$ и n^α определялись по рассчитанным скоростям фоторекомбинации [9] на термы с $n \le 6$. Некоторые результаты расчетов интенсивностей рекомбинационных линий даны в табл. 1. Сравнение с наблюдаемыми интенсивностями [8] показывает справедливость предположения о прозрачности ПТ для излучения в линиях С III (модель А по Мензелу), повтому приведены интенсивности только в этой модели. Согласие

Таблица 1 ОТНОСИТЕЛЬНЫЕ ИНТЕНСИВНОСТИ ЛИНИЙ РЕКОМБИНА-ЦИОННОГО СПЕКТРА С III $-I_R$ И НАБЛЮДАЕМЫЕ В СПЕКТРАХ ПТ — $I_{\Lambda'}$ ($\mathbf{z}^{\mathrm{eff}}$ (λ 4650) = $2.10 \cdot 10^{-13}$ см³/с И 1.85- 10^{-13} см³/с ПРИ $T_e = 10\,000$ К И 20 0.0 К СООТВЕТСТВЕННО)

). (A)	I _R		I _N					
	10 000 K	20 000 K	NGC 2440	NGC 6572	NGC 7027	NGC 7662		
3609	9	8	11	_	_			
3884	26	22	_	37	_	-		
4056	11	9	_	37	_	_		
4070	85	67	· - "	156	75	70		
4156	17	15	5	> -	18	10		
4187	33	25	29	31	41	41		
4516	12	12	19	_	3	_		
4659	100	100	100	100	100	100		
9713	0.2	0.2	_	_	_			

наблюдаемых и рассчитанных интенсивностей с учетом существующей в настоящее время значительной неопределенности в определении интенсивностей слабых линий в спектрах ПТ [10] достаточно хорошее. Полностью результаты расчетов рекомбинационного спектра С III мы предполагаем опубликовать отдельно.

2. Содержание элементов по интенсивностям рекомбинационных линий — I_{kl} удобнее всего находить через эффективные коэффи циенты

рекомбинации (ЭКР) — a_{ij}^{ff} , определенные таким образом [11], что энергия, излучаемая единичным объемом в линии k-i за 1 с, равна $H_{ijk}^{\text{ff}} a_{kl}^{\text{ff}} n_e n$, где h_{ijk}^{ff} — энергия перехода, n_e — электронная концентрация, n_e — концентрация ионов рассматриваемого элемента. Перейдя от частот к длинам волн в A и отнеся содержание ионов элемента $A - N_A$ к содержанию ионизованного водорода N_H , получим:

$$N_A^+/N_H^+ = \frac{I_{ik}^A x^{\text{eff}} (H_3)}{4861 x^{\text{eff}}_{a} (A)} \frac{I_{kl}^A}{I(H_3)}$$
(1)

где индекс «А» относится к рассматриваемому влементу. ЭКР для H_3 рассчитаны Броклехврстом [12]. В силу слабой зависимости ЭКР от T_a их отношение межно рассматривать при одной, характерной для ПТ температуре, вносимая при втом ошибка (не более 20%) существенно меньше неточностей в определении интенсивностей слабых рекомбинационных линий. Используя найденные нами ЭКР для наиболее сильных в видимой области спектра линий С III: λ 4070 ($4f^3F^0-5g^3G$), λ 4187 ($4f^1F^0-5g^1G$), λ 4650 ($3s^3S-3p^3F^0$) и аппроксимируя степенным законом их зависимость от T_a , найдем:

$$C IV/H^+ = 0.122 (T_e/10^1)^{0.04} I(4070)/I(H_3),$$
 (2)

$$C IV/H^+ = 0.318 (T_e/10^4)^{0.04} I(4187)/I(H_3),$$
 (3)

$$C IV/H^+ = 0.104 (T_e/10^4)^{-0.32} I(4650)/I(H_3).$$
 (4)

Отношение содержаний ионов C^{+} и H^+ для краткости обозначено C^{+}/H^+ .

Из линий иона С II, наблюдаемых в спектрах ПТ, линия λ 4267 $(3d^2D-4f^2F^2)$, наиболее интенсивная линия этого иона в видимой области спектра, имеет, несомненно, рекомбинационное происхождение. Используя вероятности переходов иона С II, полученные в [13], а также рассчитанные методом Хартри—Фока по программе [14], мы определили ЭКР для этой линии. Полученные значения ЭКР практически не отличаются при $T_e = 10\,000-20\,000\,\mathrm{K}$ от данных Пенжелли [4]. Согласно расчетам последней работы имеем:

$$C III/H^{+} = 0.106 (T_e/10^4)^{-0.19} I (4267) I (H_3).$$
 (5)

ЭКР для линии C IV λ 4658, представляющей совокупность линий переходов $(5f^2F^0-6g^2G)$, $(5g^2G-6f^2F^0)$ и $(5g^2G-6h^2H^0)$, можно найти по рекомбинационным населенностям термов, приведенным в [3]. Подставляя численные значения, найдем:

$$C V/H^{+} = 0.034 (T_e/10^4)^{0.04} I(4658)/I(H_2).$$
 (6)

Для линий С III, как указано в [15], при высоких для ПТ $T_e \gg 15\,000$ К может быть существенна роль дивлектронной рекомбинации. Предположим для простоты, что отношение скоростей дивлектронной и фоторекомбинаций на уровень i равно отношению полных скоростей рекомбинации, тогда интенсивность линии $k \to i$ с учетом дивлектронной рекомбинации

$$I_{ki} = I_{ki} (1 + \alpha^{di}/\alpha^{rad}), \qquad (7)$$

что, очевидно, не меняет относительных интенсивностей, приведенных в табл. 1, но приводит к увеличению ЭКР на множитель $1+a^{\rm dl}/a^{\rm rad}$. Используя для полных скоростей дивлектронной рекомбинации — $a^{\rm dl}$ сводку [16], а для полных скоростей фоторекомбинации — $a^{\rm rad}$ данные [9], получим для С III:

$$\alpha^{\rm dl}/\alpha^{\rm rad} = 916 \left(\Upsilon_e/10^{\rm l} \right)^{-0.98} e^{-91000^{\rm r}T_e}.$$
 (8)

При определении содержаний для учета дивлектронной рекомбинации следует умножить правую часть соотношений (2)—(4) на $(1+\alpha^{di}/\alpha^{rad})^{-1}$.

3. Интенсивность линий С II—С IV составляет не более 0.001—0.02 от интенсивности Н₃ и точность их определения, как упоминалось выше, мала, поэтому важно выбрать наиболее надежные и однородные данные по интенсивностям. Используем недавнюю работу [10], по-видимому, наиболее точную в настоящее время, а для NGC 2440 — данные [17], и те из интенсивностей каталога Калера [8], которые получены так же, как в [10], калибровкой фотографических интенсивностей слабых линий по точным фотовлектрическим.

Остановимся на выборе T_{\bullet} в формуле (8). Согласно ионизационной модели для NGC 7027 [18] температура в зоне О III всего на 700 К ниже, чем в зоне С IV, где образуются линии С III, и так как по линиям О III T_{\bullet} определяется наиболее надежно, будем использовать значения T_{\bullet} определенные в работе [10] по втим линиям. Эти же значения используем в формулах (2)—(6).

Полное содержание углерода в ПТ будем находить по формуле

$$C/H = [C III + C IV + C V]/H^{+}.$$
(9)

Как показывают расчеты ионизационных моделей ПТ, например, [17, 18] для ПТ высокого и промежуточного воэбуждения ($E_w \ge 5$, где. E_w — класс возбуждения ПТ, определенный согласно [19]), вто соотношение справедливо с точностью не менее 1%. Для туманностей низкого возбуждения с $E_w \le 4$ значительная часть углерода содержится в виде

нейтрального — С I и однократно ионизованного углерода — С II, и формула (9) дает только нижнюю границу полного содержания С. В табл. 2 даны полученные относительные содержания ионов С III—С V и полные содержания С согласно (9). Классы возбуждения туманностей взяты из работы [10] и справочника [20]. Усредненные по классам возбуждения — E_{ϖ} отношения С III/С, С IV/С, С V/С регулярно зависят от E_{ϖ} . Указанная зависимость приведена на рис. 1. Отношение С V/С хорошо аппроксимируется линейной зависимостью: С V/С = 9.031 ($E_{\varpi} - 5$) + 0.01, которая использовалась при определении С V/H для ПТ, в спектре которых не наблюдалась линия С IV λ 4658.

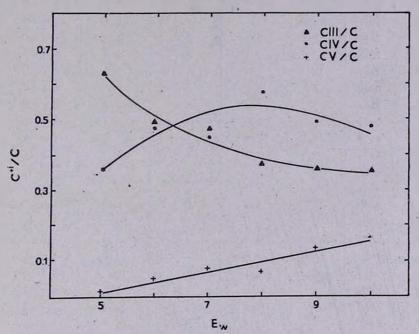


Рис. 1. Зависимость отношений содержаний ионов С III—С V к полному содержанию углерода от класса возбуждения туманности. Сплошными линиями показаны соответствующие сглаженные зависимости.

Среднее содержание углерода в рассмотренных нами ПТ высокого и промежуточного возбуждения $C/H = 1.4 \cdot 10^{-3}$ более чем в 3 раза больше втого отношения для Солнца — $4.2 \cdot 10^{-4}$ [21], что подтверждает высказанное, в частности, в [22] предположение, что относительное содержание С в ПТ высокого возбуждения заметно больше солнечного.

Сравним найденные содержания углерода с данными других авторов [15, 17, 23—25] в табл. 3. При общем согласии имеются существенные отличия от данных работы [15], что вероятнее всего объясняется тем, что в

Ta6auya 2 СОДЕРЖАНИЕ ИОНОВ СІІІ, СІV, СV И ПОЛНОЕ СОДЕРЖАНИЕ УГЛЕРОДА В ПТ

ПТ (NGC)	Ew	C III/H+ 104	CIV/H+ · 104	C V/H+-101	C/H
1	2	3	4	, 5	6
40	2	· -	_	2.8	>2.8-4*
650	_	8.4	_	· -	≥8.4-4
1535	7	11.3	20.6	1.0	3.33
2022	10	10.1	9.5	3.3	2.3-3
2371	9	4.3	_	2.7	1.6-3
2392	8	_	_	4.4	≥4.4—4
2440	9	4.1	3.4	1.7	9.2-4
3242	7	8.4	6.1	0.3	1.53
4361	10	_		7.2	>7.2−4
6210	5	5.5	3.9		9.44
6543	5	8.8	8.6	0.5	1.8-3
6572	5	6.8	1.5	T	8.6-4
6629	4	10.0	_	-	>1.0-3
6644	• 7	7.1	8.9		1.7—3
6720	6	10.4	_	-	>1.0-3
6741	8	8.3	5.4	- 4	1.5-3
6790	6	3.3	9.2	_	1.3-3
6803	6	5.0		_	>5.0-4
6818	9	4.7	4.2	1.2	1.0-3
6826	5	9.6	-7	1.0	1.0-3
6833	4	4.1	-		>4.1-4
6884	6	11.0	7.4	-	1.9-3
6886	8	4.7	11.2	1.2	1.7-3
6891	5_	11.4	3.9	-	1.5-3
7009	6	11.7	5.8	0.2	1.8-3
7027	10	7.2	6.4	1.7	1.5-3
7662	8	6.6	6.9	•1.4	1.53
. IC 351	8	4.8	10.0	_	1.6-3
IC 418	. 3	7.5	1.5	S -	9.0—4
IC 1747	6	7.2	11.1	_	1.9-3
IC 2003	8	4.7	5.4	2.2	1.2-3
1C 2165	9	14.3	11.3	1.7	1.7-3
IC 4776	6	- ***	2.8	_2	≥2.8-4
	21.1				32 .

 $^{2.8-4=2.8\}cdot10^{-4}$

Таблица 2 (окончание)

				1 doxugu Z (OKORAURUE)			
1	2	3	4	5	6		
IC 4846	5	_	2.8	4	>2.8-4		
IC 4997	5	2.1	0.3	-	2.4-4		
IC 5117	6	4.6	3.3	_	8.2-4		
IC 5217	6	2.3	6.8	0.8	9.9-4		
J 320	5	4.2	_		>4.2-4		
J 900	7	3.4	0.9	1.7	6.0-4		
Hb 12	_	4.3	_	_	>4.3←4		
Hu 1-2	10	2.9	0.9	1.7	5.5-4		
Hu 2-1		3.8		_	≥3.8-4		
К3 —62		-		4.7	>4.7-4		
Me 1-1	6	6.2	11.8		1.9-3		
CN 3-1	1	3.4	_	_	>3.44		
MI 74	3-1	5.7	****		>5.7-4		
среднее					1.4-3		

ней содержание С определялось только по С III/С, что может привести к значительным ошибкам, так как содержание иона С III в полном содержании С в ПТ часто меньше половины (см. [17, 18] и рис. 1).

Таблица 3 СРАВНЕНИЕ ОТНОСИТЕЛЬНЫХ СОДЕРЖАНИЙ С/Н С ЛАННЫМИ ДРУГИХ РАБОТ

т	IC	NGC					
Ссылка	2165	2440	6818	7027	7662	Hu 1-2	
Наст. работа	1.7-3	9.2-4	1.0-3	1.53	1.5-3	5.5-4	
[15]	1.3-3	_		2.5-3	6.3—3	_	
[17]	_	4.0-3		_	-	_	
[23]	1.7-3	_	1.9—3	-	2.3-3	_	
[24]	-	_		1.3-3	_	_	
[25]		3.8-4	4.5-4	- 7	8.6-4	1.2-4	

В заключение остановимся на вопросе о соотношении содержаний углерода, определяемых по рекомбинационным линиям и по линиям УФ-области спектра, в частности по интеркомбинационным линиям С II λ 2326, С III λ 1909 и резонансной линии С IV λ 1548. Содержания, получаемые по УФ-линиям [17, 24, 25] (для детальных ссылок см. [26]), в большинстве случаев меньше, чем определяемые по рекомбинационным (в среднем

в 2 раза). Причиной таких различий, по нашему мнению, являются два обстоятельства: во-первых, неточности в определении T_e в области формирования УФ-линий (ошибка в T_e на 2000 К может привести к ошибке в содержаниях на порядок), во-вторых, то, что интенсивности рекомбинационных линий С II—С IV в спектрах ПТ могут быть переоценены. Этот вопрос предполагается исследовать более детально в последующих работах.

В заключение автор выражает благодарность А. А. Никитину и Т. Х. Феклистовой за полезное обсуждение работы.

Ленинградский государственный университет

CARBON ABUNDANCES IN PLANETARY NEBULAE

A. F. KHOLTYGIN

The intensities of C III recombination lines are calculated. Using the intensities of observed lines of C II, C IV ions the abundances of CIII, CIV, CV ions and full carbon abundances for forty six planetary nebulae are found.

ЛИТЕРАТУРА

- 1. А. А. Никитич, А. А. Сапар, Т. Х. Феклистова, А. Ф. Холтыгин, Публ. Тартуской обс., 45, 106, 1977.
- 2. А. А. Никитин, А. А. Сапар, Т. Х. Феклистова, А. Ф. Холтыгин, Публ. Тартуской обс., 49, 40, 1982.
- 3. E. M. Letbowttz, Thesis, Cambridge, 1971.
- M. J. Seaton, In "Planetary Nebulae. Observation and Theory", Symp. No. 76. IAU, Ithaca, New York, USA. Dordrecht- Boston, 131, 1978.
- А. А. Никитин, А. Ф. Холтызин, Т. Х. Феклистова, Публ. Тартуской обс., 45, 45, 1977.
- 6. A. Ф. Холтыгин, Астрофизика, 16, 115, 1980.
- А. А. Никитин ,З. Б. Рудзикас, Основы теория спектров атомов и ионов, Наука, М., 1983.
- 8. J. B. Kaler, Ap. J., Suppl. ser., 31, 517, 1976.
- 9. А. Ф. Холгыгин, Т. Х. Феклистова, Вестн. ЛГУ, № 19, 64, 1983.
- 10. L. H. Aller, S. J. Czyzak, Astrophys. Space Sci., 62, 397, 1979.
- 11. M. J. Seaton, Rep. Progr. Phys., 23, 313, 1960.
- 12. M. Brocklehurst, M. N., 148, 417, 1970.
- 13. H. Nussbaumer, P. J. Storey, Astron. Astrophys 96, 91, 1981.
- П. О. Бозданович, Программа численного решения уравнений Хартри—Фока, Сборник программ по математическому обеспечению атомных расчетов, вып. 2, Вильнюс, 1978.
- 15. S. Torres-Peimbert, M. Peimbert, Rev. Mex. Astron. Astrophys., 2, 181, 1974.

- 16. S. M. V. Aldrovandi, D. Pequignot, Astron. Astrophys., 25, 137, 1973.
- 17. G. A. Shields, L. H. Aller, C. D. Keyes, S. J. Czgzak, Ap. J., 248, 569, 1981.
- 18. G. A. Shields, Ap. J., 219, 565, 1978.
- 19. L. H. Aller, Caseous Nebulae, Chapman and Hall Ltd., London, 1956.
- 20. К. Ленг, Астрофизические формулы, часть 1, Мир, М., 1978.
- 21. J. E. Ross, L. H. Aller, Science, 191, 1223, 1976.
- 22. А. А. Никитин, А. А. Сапар, Т. Х. Феклистова, А. Ф. Холтыгин, Астрон. ж., 58, 101, 1981.
- L. H. Aller, In "Planetary Nebulae. Observation and Theory", Symp. No. 76, IAU, Ithaca, New York, USA, Dordrecht-Boston, 225, 1978.
- 24. M. Perinotto, N. Panagia, P. Benvenutti, Astron. Astrophys., 85, 332, 1980.
- 25. L. H. Aller, S. J. Czyzak, Proc. Nat. Acad. Sci. USA, 78, 5266, 1981.
- 26. J. B. Kaler, Ap. J., 249, 201, 1981.