АСТРОФИЗИКА

TOM 20

АПРЕЛЬ, 1984

ВЫПУСК 2

УДК 521.135—327—54

ВЛИЯНИЕ ЭФФЕКТА ВРАЩЕНИЯ НА ЭВОЛЮЦИЮ ТРОЙНЫХ СИСТЕМ

Ж. П. АНОСОВА, Д. И. БЕРТОВ, В. В. ОРЛОВ Поступила 10 марта 1983 Принята к печати 20 октября 1983

Методом численного эксперимента на ЭВМ исследована динамическая эволюцият тройных систем с отрицательной полной энергией и ненулевым моментом вращения; массы тел равны. Начальные конфигурации выбирались случайным образом; начальные эначения вириального коэффициента k = 0.1, 0.2, 0.3, 0.4, 0.5; значение утлового момента $L \sim \sqrt{k(1-k)}$. Для каждого k рассмотрено по N = 1000 тройных систем. Основные результаты: 1) в $\sim 95\%$ случаев тройные системы распадаются и распад всегдаследует после тройного сближения тел; в остальных случаях тройные системы являютсянерархическими устойчивыми образованиями; 2) по сравнению с невращающимися системами число тройных сближений, предшествующих распаду, существенно уменьшается; 3) сближения, приводящие к распаду, становятся в среднем шире; 4) с ростом k нижняя оценка времени жизни тройных систем в среднем увеличивается, возрастает также число N^* нераспавшихся систем.

Исследование динамихи тройных систем с отрицательной полной энергией E < 0 и ненулевым моментом вращения $L \neq 0$ методом численного эксперимента на ЭВМ проводилось в [1-3]: в [1] рассмотрены системы с компонентами равных масс, в [2, 3] массы тел различны. Оказалось, что: 1) эволюция вращающихся тройных систем в большинстве случаев заканчивается распадом; 2) распад всегда следует после тройного сближения. тел; 3) наличие вращения существенно увеличивает время жизни систем. Сводные результаты [1-3] приведены в табл. 1. В первом столбце указана численность N изученных тройных систем. Во втором находится число-N* систем, не распавшихся за рассмотренный промежуток времени Δt. В. [1, 4, 6, 7] положено $\Delta t = 1000 \tau$, где т — среднее время пересечения компонентом системы, определенное в [8]; в [3, 5] Δt равно соответственно 100 и 150 принятых единиц времени; в [2] эволюция систем прослеживалась в течение 10 000 шагов интегрирования. В третьем столбце табл. 1 отмечено равенство или неравенство масс тел. В четвертом помещены нижние оценки среднего времени $\overline{T^*}$ жизни изученных тройных систем, в [2] оценки времени получены только для распавшихся систем. Во второй поло--

ж. п. аносова и др.

вине табл. 1 для сравнения представлены данные исследований [2, 4—7] волюции тройных систем с нулевыми начальными скоростями (L=0)Следует отметить, что исследования [1—3] выполнены на небольшом статистическом материале ($N \leq 400$); в настоящей работе изучено N = 5000систем с ненулевым угловым моментом ($L \neq 0$) и для сравнения 1000 систем с L = 0.

-			1	Таблица 1
N	N*	Массы	T* (7)	Литература
*		1-2	<i>L</i> ≠0	
100	6	h	170.1 <u>+</u> 24.2	1 [1]
100	1	равные	73.8±7.8	[2]
.5000	267		141	Настоящая работа
6	5		85	[3]
400	32	}	66.4 <u>+</u> 6.1	[2]
	11		L=0	
100	1	1.	87.1± 8.6	[2]
1500	0	равные	112.3 <u>+</u> 2.8	[4]
125	33	1	80 -	[5]
100	0	различные	39.3 <u>+</u> 5.5	[2]
5500	0		59.4±1.1	[6, 7]

Исследование динамики плоских вращающихся тройных систем с компонентами равных масс в дачной работе проводилось методом численного эксперимента, разработанным в [1, 8]. Начальные положения тел задавались случайным образом в области D всех возможных конфигуоаций (рис. 2 в [1]). Выбор начальных скоростей идентичен [1] (формулы (1) — (5)). Начальные значения вириального коэффициента приняты k = 0.1, 0.2, 0.3, 0.4, 0.5. Легко показать, что при данном выборе начальных скоростей значение углового момента $L \sim \sqrt{k(1-k)}$. Для каждого k изучено по N = 1000 тройных систем. Для них на ЭВМ выполнено численное интегрирование уравнений движения тел методом Рунге-Кутта; при тесных двойных сближениях применялась регуляризация дифференциальных уравнений методом Sundman [9]. Контролем вычислений служило сохранение интегралов движения --- среднее относительное изменение интеграла энертии, наиболее чувствительного к ошибкам вычислений, оказалось равным ~ 10⁻⁴ для рассмотренных тройных систем.

Проведенные в настоящей работе исследования показали, что в рассмотренных случаях за время $\Delta t \leq 1000$ т вволюция 94.7% систем завер-

ЭФФЕКТ ВРАЩЕНИЯ И ТРОИНЫЕ СИСТЕМЫ

шается распадом: образуется финальная двойная, а третий компонент удаляется от нее по гиперболической орбите. Распад всегда происходит после тройного сближения тел, определение радиуса сферы сближения дано в [10]. В качестве критерия распада использован критерий Тевзадзе [11]. Моментом распада считался момент наиболее сильного взаимодействия тел в ходе тройного сближения, приведшего к распаду, момент достижения минимума периметра конфигурационного треугольника. В 21.1% случаев критерий распада не выполнялся, но один из компонентов уходил от двух других на расстояние $\varepsilon > 20 d$, где d — средний размер системы, определенный в [8]. В таких случаях считалось, что система распалась условно; в реальном внешнем поле удалившийся на такое расстояние компонент может быть оторван от двойной регулярными и иррегулярными силами.

Для каждой системы определялись значения вволюционных параметров: 1) времени распада T; 2) периметра p конфигурационного треугольника в момент последнего тройного сближения; 3) относительного превышения $DE = \frac{\Delta' E}{-E}$ (см. [1]) уносимой энергии над энергией, требуемой. критерием распада; 4) числа n тройных сближений, имевших место в ходе эволюции системы; 5) динамических элементов финальных двойных большой полуоси a и эксцентриситета e. Величины T выражены в единицах , a и p—в единицах d. При каждом k для распавшихся тройных систем определены средние значения и среднеквадратичные отклонения эволюционных параметров:

$$\overline{T} \pm \sigma_{\overline{T}}, \quad \overline{n} \pm \sigma_{\overline{n}}, \quad \overline{DE} \pm \sigma_{\overline{DE}}, \quad \overline{p} \pm \sigma_{\overline{p}}, \quad \overline{a} \pm \sigma_{\overline{a}}, \quad \overline{e} \pm \sigma_{\overline{e}}. \quad (1)$$

Результаты приведены в табл. 2. В первом столбце указаны начальные значения вириального коэффициента k, во втором даны средние значения $\overline{L}' = \overline{L}_{i=1}^{3} M_i$ углового момента на единицу массы, в третьем — число N^* систем, не распавшихся за время $\Delta t = 1000$ т; в четвертом столбце дана нижняя граница \overline{T}^* времени распада с учетом N^* ; в следующих шести столбцах представлены величины (1); в последнем столбце указано число $N_{y.p.}$ систем, распавшихся условно. В первой строке табл. 2 для сравнения помещены результаты исследования тройных систем с нулевыми начальными скоростями (k=0, L=0); в последней строке находятся данные, полученные для всей совокупности N = 5000 систем; определенные здесь оценки \overline{T}^* и N^* приведены в третьей строке табл. 1 для сравнения с результатами предыдущих работ. Оказалось, что с увеличением углового момента \overline{L} : 1) средняя нижняя оценка времени распада \overline{T}^* существенно увеличивается, но среднее время:

Ж. П. АНОСОВА И ДР.

 \overline{T} жизни распавшихся $(N - N^*)$ тройных систем от k и \overline{L}' зависит слабо, то есть увеличение \overline{T}^* вызвано в основном ростом числа N^* ; 2) среднее число тройных сближений \overline{n} , предшествующих распаду, Tаблица 2

K	T'	N*	\overline{T}^*	T±"	n±5_	DE±=	p±=_p	a±=,		N _{y.p.}
0	0	0	91	91.0 ± 3.2	8.4 <u>+</u> 0.3	0.715 +0.055	0.663 +0.010	0.256 +0.002	0.705 +0.009	182
0.1	0.248	23	108	87.2 <u>+</u> 3.0	6.0 <u>+</u> 0.2	0.614 +0.047	0.932 <u>+</u> 0.012	0.264 ±0.002	0.835 ±0.007	195
0.2	0.331	39	120	84.7 <u>+</u> 3.2	5.4 ±0.2	0.354 <u>+</u> 0.022	1.109 <u>+</u> 0.012	0.276 ±0.002	0.845 +0.006	198
0.3	0.379	59	150	97.2 ± 3.7	5.6 <u>+</u> 0.2	0.314 <u>+</u> 0.024	1.211 ±0.015	0.279 ±0.002	0.830 <u>+</u> 0.006	238
0.4	0.405	66	152	92.3 ± 3.4	5.0 <u>+</u> 0.2	0.340 <u>+</u> 0.028	1.311 <u>+</u> 0.016	0.281 ±0.002	0.830 ±0.006	198
0.5	0.414	80	172	100.0 ± 3.3	5.0 <u>+</u> 0.2	0.362 ± 0.035	1.270 ±0.016	0.280 ±0.002	0.829 ±0.006	227
0.1-0.5	0.356	267	141	92.3 <u>+</u> 1.5	5.4 <u>+</u> 0.1	0.397 <u>+</u> 0.015	1.167 ±0.007	0.276 ±0.001	0.834 ±0.003	1056

уменьшается — вращение препятствует тесным тройным сближениям тел; 3) уносимая энергия \overline{DE} в среднем уменьшается; 4) тройные сближения в среднем становятся значительно шире; 5) средние значения больших полуосей \overline{a} финальных двойных возрастают; 6) в зависимости $\overline{e}(k)$ наблюдается резкое возрастание при изменении k от •0 до 0.1.

	Таб.	uya 3					
	k	⊭ 0	k = 0				
P	v	DE	v	DE			
0-0.5	0.079	2.270	0.333	1.766			
0.5-1.0	0.302	0.515	0.531	0.233			
1.0-1.5	0.379	0.143	0.129	0.024			
1.5-2.0	0.192	0.043	0.007	0			
2.0-2.5	0.044	0.011	0	-			
2.5-3.0	0.004	0.005	0	-			

В табл. З приведена зависимость уносимой энергии \overline{DE} от периметра p для всех рассмотренных значений k. В первом столбце даны интервалы p, во втором — относительная частота \vee попаданий в дан-

330

ный интервал p, в третьем столбце находятся соответствующие средние $\overline{DE}_{Aля} k \neq 0$. В следующих двух столбцах приведены величины и \overline{DE} при k = 0. Таблица показывает, что при любом k чем теснее тройное сближение, тем в среднем больше энергии уносит удаляющийся компонент. Эта корреляция свидетельствует о реальности явления распада тройных систем.

_				Contraction of the local division of the loc		
		n	DE	p	a	e
T	1	+0.722 ±0.007	-0.001 ± 0.014	-0.022 ± 0.014	-0.005 ±0.014	-0.052 ± 0.014
n.		1	+0.039 0.014	-0.213 0.014	-0.062 0.014	-0.049 0.014
DE			1	$-\frac{0.444}{0.011}$	$-0.721 \\ 0.007$	0.043 0.014
p		<i>k</i> , <i>L</i> ≠0		1	$+\frac{0.610}{0.009}$	+0.216
a					1	+0.066 0.014
6			-			1
Т	1	+0.875	-0.018 +0.032	-0.006 +0.032	+0.063 +0.032	+0.037
n		1	-0.011 0.032	-0.023 0.032	+0.048 0.032	+0.007
DE	201	· · · · · ·		0.444	0 (00	0 0.01
-	1.44		1.	-0.464	-0.693	0.031
р			k, L=0	- <u>0.464</u> 0.025 1	-0.693 0.017 +0.679 0.017	-0.031 0.032 +0.329 +0.028
р a			k, L=0	$-\frac{0.464}{0.025}$	$-\frac{0.693}{0.017}$ $+\frac{0.679}{0.017}$ 1	-0.031 0.032 $+0.329$ $+0.028$ 0.063 0.032

В табл. 4 представлены коэффициенты корреляции r между рассмотренными эволюционными параметрами, вычисленные для распавшихся 5000 вращающихся тройных систем и 1000 систем с k = 0; приведены также средние ошибки r. Таблица свидетельствует о сильной

331

Таблица 4

корреляции величин n и T, p и DE, a и DE, a и p — чем больше время распада системы, тем больше тройных сближений происходит в ней; чем теснее тройное сближение, приведшее к распаду, тем больше энергии уносит уходящее тело и тем теснее образуется финальная двойная. Отметим слабую корреляцию при $k \neq 0$ между p и n, p и e(r подчеркнуты пунктиром). При k = 0 корреляции между p и n, p и e(r подчеркнуты пунктиром). При k = 0 корреляции между p и n не наблюдается, а положительная корреляция между p и e сохраняется. Для остальных возможных сочетаний рассмотренных параметров корреляция несущественна ($|r| \leq 0.1$). Небольшое значение $r = + 0.07 \pm \pm 0.01$ между величинами a и e свидетельствует о слабо выраженной зависимости период — эксцентриситет для финальных двойных; в [12]. получено r = -0.072.

В табл. 5а—5е представлены нормированные функции распределения эволюционных параметров для k = 0; k = 0.1, 0.2 и k = 0.3, 0.4, 0.5. В последнем столбце табл. 5е для сравнения приведены результаты [13], полученные аналитически при исследовании финальных состояний плоских тройных систем. Таблицы показывают, что: 1) функции распределения всех параметров, кроме f(p), при различных k имеют сходный вид; 2) у f(p) с уменьшением k мода сдвигается влево и максимум функции увеличивается; 3) преобладают системы с небольшим временем распада; 4) число систем с небольшим n с увеличением k возрастает; 5) с уменьшением k убывает доля условных распадов (DE < 0); 6) при возрастании k увеличивается доля финальных двойных с большими значениями a и e.

Зависимость времени распада Т тройных систем от начальной конфигурации исследована в [1, 14-17]. В [1] эта зависимость изучалась при k = 0.2 на небольшом статистическом материале (N = 100); в [14-17] выявлены локальные области непрерывного изменения времени распада Т при небольших вариациях начальных положений и скоростей тел. В настоящей работе для исследования зависимости времени распада T(t, т) от начальных координат в области D всех возможных конфигураций тройных систем с компонентами равных масс при каждом k наносились начальные положения третьего тела рассмотренных N = 1000 систем и соответствующие времена их распада. На рис. 1-2 эти диаграммы при k = 0, 0.1, 0.3, 0.5 приведены для наглядности с N = 100. Около каждой точки условными значками отмечено соответствующее время распада Т: черные кружки относятся к тройным системам с $T \in (0, 10)$, пустые кружки — к системам с Т (10, 50), перечеркнутые по диагонали квадратики — *T* ∈ (50, 100), треугольники — *T* ∈ (100, 500), крестики в кружках — Т>500 ;; крестиками обозначены тройные системы, не распавшиеся за время $\Delta t = 1000$ г; кривые на рис. 1b-2 являются изолиниями по-

Таблица 5

	k =0	0.1, 0.2	0.3, 0.4, 0.5	Δn	k =0	0.1, 0.2	0.3, 0.4, 0.5	ΔDE	k =0	0.1, 0.2	0.3, 0.4, 0.5
0- 10	0.168	0.182	0.114	1	0.174	0.206	0.200	DE < 0	0.182	0.196	0.221
10- 20	0.081	0.098	0.085	2	0.094.	0.133	0.169	0-0.1	0.288	0.326	0.370
20- 30	0.078	0.070	0.086	3	0.079	0.131	0.131	0.1-0.2	0.062 -	0.068	0.077
- 30- 40	0.066	0.072	0.069	4	0.066	0.088	0.106	0.2-0.3	0.078	0.064	0.056
40- 50	0.057	0.056	0.061	5	0.073	0.074	0.076	0.3-0.4	0.045	0.053	0.050
50-100	0.212	0.213	0.243	6-10	0.223	0.222	0.201	0.4-0.5	0.040	0.035	0.032
100-150	0.120	0.132	0.139	11-15	0.124	0.086	0.067	0.5-1.0	0.100	0.122	0.095
150-200	0.096	0.071	0.078	16-20	0.077	0.033	0.027	1.0-1.5	0.063	0.050	0.040
T>200	0.122	0.106	0.124	n>20	0.090	0.027	0.022	1.5-2.0	0.046	0.027	0.022
-	1.47							DE>2.0	0.096	0.059	0 031

б

a

5

Δp	k=0	0.1, 0.2	0.3, 0.4, 0.5	Δα	k =0	0.1, 0.2	0.3, 0.4, 0.5	Δ.σ	k = 0	. 0.1, 0.2	0.3, 0.4, 0.5	Monaghan [13]
0-0.4	0.198	0.059	0.041	0-0.05	0.007	0.003	0.003	0-0.2	0.057	0.010	0.010	0.020
0.4-0.8	0.489	0.256	0.150	0.05-0.10	0.039	0.022	0.012	0.2-0.4	0.122	0.049	0.037	0.063
0.8-1.2	0.256	0.331	0.255	0.10-0.15	0.080	0.049	0.026	0.4-0.6	0.136	0.081	0.089	0.117
1.2-1.6	0.057	0.285	0.299	0.15-0.20	0.106	0.090	0.076	0.6-0.8	0.215	0.136	0.195	0.200
1.6-2.0	0	0.059	0.182	0.20-0.25	0.157	0.164	0.145	0.8-0.9	0.133	0.144	0.154	0.164
p > 2.0	0	0.010	0.073	0.25-0.30	0.247	0.250	0.269	0.9-1.0	0.337	0.580	0.513	0,436
- 11-		-		a>0.30	0.364	0.422	0.468					

стоянного углового момента L', соответствующие значения L' указаны рядом с изолиниями. Расположение условных знаков на рис. 1—2 показывает, что области с различными значениями времени распада, перемежаясь, сложным образом заполняют D. Как отмечалось в работах [16, 17], около линий, ограничивающих области непрерывного изменения T, время распада стремится к бесконечности, если не рассматривсть условные распады.

Рис. 1. Зависимость времени распада T от начальной конфигурации при а) k = 0, b) k = 0.1.

На рис. 1b—2 начальные конфигурации нераспавшихся вращающихся тройных систем находятся в правом нижнем углу области Dвсех возможных конфигураций, обозначим эту часть области D^* . Конфигурации в D^* соответствуют иерархическим системам. Аналогичный результат получен в [1] при k = 0.2 и N = 100. На рис. 1b—2 D^* заштрихована, граница ее обозначена пунктирной линией. Предварительное исследование показало, что граница D^* хорошо аппроксимируется изолинией среднеквадратичного углового момента тел

$$L^* = \sqrt{\frac{\sum_{i=1}^{3} L_i^2}{3}} \approx 0.55, \text{ rge } L_i = M_i (x_i y_i - y_i x_i).$$
(2)

эффект вращения и тройные системы

С ростом k площадь D^* увеличивается, о чем свидетельствует табл. 6, во втором столбце которой приведены отношения λ площадей D^* и D, в третьем столбце дана доля N^*/N нераспавшихся тройных систем для каждого k. Табл. 6 показывает хорошее согласие величин λ и N^*/N .

Рис. 2. Зависимость T от начальной конфигурации при a) k = 0.3, b) k = 0.5.

Изучение характера движений тел в нераспавшихся тройных системах с начальной конфигурацией в области D^* показало отсутствие в них тройных сближений за промежуток времени $\Delta t = 1000 \tau$; движения тел носят условно-периодический характер; система длительное время сохраняет иерархическую структуру — далекое тело движется по эллиптической орбите с небольшим эксцентриситетом относительно центра масс внутренней двойной, образованной близкими телами. При приближении к границе области D^* изнутри взаимные возмущения тел возрастают. Вблизи D^* конфигурации систем через некоторое время перестают быть иерархическими и система в конце концов распадается.

Помимо области D^* , тройные системы в которой имеют большие угловые моменты ($L' \gtrsim 0.4$), при $k \neq 0$ обнаружено несколько тройных систем, нераспавшихся за $\Delta t = 1000 \tau$, с угловыми моментами

 $L' \sim 0.1 - 0.2$ при разных k и неиерархическими начальными конфигурациями с ; ~ 0.1 и $\eta \sim 0.2$. Изучение эволюции таких систем показало следующие особенности характера движений тел в них: во все время эволюции два компонента находятся почти на одной прямой с центром масс всей системы; третье тело движется между ними, попеременно сближаясь то с одним, то с другим компонентом. Четыре системы со сходным характером движений тел обнаружены при L = 0

_		Таблица б
k	Ι λ	N*/N.
0	0	0
0.1	0.023	0.023
0.2	0.040	0.039
0.3	0.057	0.059 •
0.4	0.065	0.066
0.5	0.069	0.080
	1	1

в [12] (рис. 1). На рис. 3_{1} —г для примера приведены траектории движения тел в такой системе при $\kappa = 0.2$, ; = 0.101 699 471, $\eta =$ = 0.206 043 838; период обращения системы ~ 250 ... Траектории движения тел на каждом рисунке в течение 5⁻ приведены в барицентрической системе координат XOY; единица расстояния — средний размер системы. Рисунки представляют собой четыре фрагмента траекторий непрерывного движения тел. В верхнем правом углу указан начальный для данного рисунка момент времени; стрелки указывают направление вращения всей системы. Крестиками отмечены начальные и конечные положения тел; цифры указывают моменты времени. Сплошные, жирные и пунктирные линии на рисунках соответствуют траекториям движения первого, второго и третьего компонентов. Стрелки вдоль траекторий указывают направление движения тел.

Таким образом, исследование эволюции изолированных вращающихся плоских тройных систем показало, что: 1) в ~ 95% случаев тройные системы с отличным от нуля угловым моментом распадаются и распад всегда следует после тройного сближения тел. 2) Эволюция вращающихся систем с $L \neq 0$ протекает более «спокойно», чем при L = 0: а) уменьшается число тройных сближений тел, предшествующих распаду; 6) промежуток времени между двумя последовательными тройными сближениями существенно возрастает; в) первое тройное сближение наступает позже; г) сближения оказываются менее тесными; д) уходящий при распаде компонент в среднем уносит меньше энергии; е) орбиты финальных двойных в среднем более широки и вытянуты, причем заметной корреляции пе-

ЭФФЕКТ ВРАЩЕНИЯ И ТРОЙНЫЕ СИСТЕМЫ

риод — эксцентриситет в них не обнаружено. 3) С увеличением момента вращения в среднем возрастает нижняя оценка \overline{T}^* времени жизни тройных систем, что происходит в основном за счет увеличения числа N^* устойчивых траекторий; без учета N^* зависимость $\overline{T}(k)$ значительно слабее. 4) Хотя при росте k тройные сближения становятся в среднем значительно шире, они, тем не менее, вызывают распад тройных систем при некото-

Рис. За—Зг. Траектории движения тел в тройной системе типа «цепочка», нераспавшейся за $\Delta t = 1000$ т.

рых благоприятных обстоятельствах: при $L \neq 0$ уходы тел происходят преимущественно в направлении вращения системы. 5) Тройные сближения при одинаковой степени тесноты при $k \neq 0$ вызывают уходы тел с большими энергиями, чем при k = 0 (табл. 3). 6) При любых k преобладают системы с небольшим временем распада. 7) На диаграммах $T(\xi, \eta)$ при $k \neq 0$ выявлены области устойчивости систем с иерархическими конфигурациями; с ростом k площади D^* увеличиваются приблизительно

337

втрое при изменении k от 0.1 до 0.5. 8) Движения тел в таких системах носят, по-видимому, условно-периодический характер — элементы орбит внутренней и внешней двойных практически не меняются за $\Delta t = 1000$ τ .

В дальнейшем авторы предполагают лодробнее исследовать изменение характера движений тел при переходе от устойчивых тройных систем к неустойчивым, получить эмпирически условия устойчивости систем при произвольном выборе начальных данных и сопоставить этот критерий с известными результатами работ [18—22], полученными для более узких классов движений.

Ленинградский государственный университет

THE INFLUENCE OF AN EFFECT OF ROTATION ON THE EVOLUTION OF TRIPLE SYSTEMS

G. P. ANOSOVA, D. I. BERTOV, V. V. ORLOV

The dynamical evolution of triple systems with negative total energy and other than zero momentum of rotation is investigated by the method of numerical experiment; the masses of bodies are equal. The initial configurations were chosen randomly; the initial quantities of virial coefficient k=0.1, 0.2, 0.3, 0.4, 0.5; the value of angular momentum $L \sim V \ k(1-k)$. It is considered N = 1000 triple systems for every k. The principal results: 1) in $\sim 95^{\circ}/_{0}$ cases the triple systems are disrupted and the disruption is followed always after triple approach of bodies; in the rest cases the triple systems are hierarchiecal stable formations; 2) on comparison with no rotating systems the quantity of triple approaches foregoing to the disruption is decreased essentially; 3) the approaches leading to the disruption are became broader; 4) with a growth of k the lower estimation of time of life of triple systems is increased in average, the quantity N^* of no disrupted systems is grown also.

ЛИТЕРАТУРА

- 1. Ж. П. Аносова, Труды АО ЛГУ, 26, 88, 1969.
- 2. E. M. Standish, Astron. Astrophys., 21, 185, 1972.
- 3. V. Szebehely, A. J., 77, 169, 1972.
- 4. Ж. П. Аносова, Веств. ЛГУ, 13, 158, 1977.
- 5. V. Szebehely, Celest. Mech., 6, 84, 1972.
 - 6. Ж. П. Аносова, Д. Д. Положенцев, Труды АО ЛГУ, 36, 128, 1978.
 - 7. Ж. П. Аносова, В. В. Орлов, Труды АО ЛГУ, 40, 1982.

ЭФФЕКТ ВРАЩЕНИЯ И ТРОЙНЫЕ СИСТЕМЫ

- 8. Т. А. Алекян, Ж. П. Аносова. Астрон. ж., 44, 1261, 1967.
- 9. Г. Н. Дубошин, Небесная механика, Наука, М., 1964, гл. Х.
- 10. Т. А. Азекян, А. И. Мартынова, Вестн. ЛГУ, 1, 122, 1973.
- 11. Г. А. Тевзалзе, Изв. АН Арм.ССР, 15, 67, 1962.
- 12. D. Benest, M. Fulconis, Mitt. Astron. Ges., 57, 265, 1982.
- 13. J. J. Monaghan, M. N. RAS, 176, 63, 1976.
- 14. V. Szebehelg, Astron. Astrophys., 22, 171, 1973.
- T. A. Agekjan, J. P. Anosova, The stability of triple stellar systems. Symp-"The sability of small stellar systems", 1974, p. 247.
- 16. Т. А. Азекян, Ж. П. Аносова, Труды АО ЛГУ, 33, 52, 1977.
- 17. E. M. Standish, Celest. Mech., 14, 493, 1976.
- 18. V. Szebehely, K. Zare, Astron. Astrophys., 58, 145, 1977.
- 19. V. Szebehelg, Celest. Mech., 15, 107, 1977.
- 20. R. S. Harrington, Celest. Mech., 6, 322, 1972.
- 21. F. Graziani, D. Black, Ap. J., 251, 337, 1981.
- 22. D. Black, A. J., 87, 1933, 1982.