АСТРОФИЗИКА

TOM 20

АПРЕЛЬ, 1984

выпуск 2

УДК 52—726

РАВНОВЕСНЫЕ СОСТОЯНИЯ ВЫРОЖДЕННОЙ ЗАМАГНИЧЕННОЙ ЭЛЕКТРОННО-ЯДЕРНОЙ ПЛАЗМЫ

С. С. ЛИПОВЕЦКИЙ, В. С. СЕКЕРЖИЦКИЙ Поступила 15 июня 1983 Принята к печати 20 января 1984

Проведено вычисление термодинамических и ядерных параметров вырожденного сильно замагниченного вещества при плотностях $\sim 10^7 - 10^{13}$ г.см⁻³, устойчивого относительно β^- -процессов и пикноядерных реакций. Обсуждается корректность применимости модели невзаимодействующих частиц для подобных расчетов.

Как известно [1], в коре пульсаров, обладающих магнитными полями ~ $10^{10} - 10^{13}$ Гс у поверхностей [2] и, возможно, еще более сильными в недрах, могут реализоваться влектронно-ядерная (Ae) и электронно-нейтронно-ядерная (Aen) фазы вещества. Проведем вычисления параметров плотного замагниченного вещества, находящегося в относительно и абсолютно устойчивых состояниях термодинамического равновесия. Частично данный вопрос обсуждался в [3-6].

Этим состояниям Ас-фазы отвечают, соответственно, условия [1, 3-6]:

$$\left(\frac{\partial w}{\partial Z}\right)_{A, n_B, H} = 0; \quad \left(\frac{\partial w}{\partial Z}\right)_{A, n_B, H} = \left(\frac{\partial w}{\partial A}\right)_{Z, n_B, H} = 0.$$
(1)

Для модели невзаимодействующих частиц и ядер одного сорта плотность энергии среды $w = m_n c^3 n_A + w_e$, где n_A и n_B — концентрации ядер и всех барионов, A и Z — массовое и зарядовое числа ядра, w_e — плотность энергии электронов. Энергию покоя ядра вычисляем с помощью формулы Вайцзеккера, модифицированной согласно [7, 8]:

$$m_{A} c^{2} = 939.55 (A - Z) + 938.256 Z - 15.75 A + 17.8 A^{2/3} + 0.71 Z^{2} A^{-1/3} + 23.7 A (1 - 2 Z A^{-1})^{2} + 0.878 A (1 - 2 Z A^{-1})^{4} + \alpha H^{2} Z A^{2/3}.$$
 (2)

Значения коэффициентов в (2) даны в МэВ и взяты из [1], $\alpha \approx 1.1 \times \times 10^{-43}$ см³. Предпоследные слагаемое (2) не учитывалось в [3, 4],

последнее — в [3]. Используя результаты [9], для вырожденного идеального релятивистского электронного газа в квантующем магнитном поле с напряженностью H имеем:

$$e_{e}(H) = \left(\frac{\partial w_{e}}{\partial n_{e}}\right)_{H} = \left[m_{e}^{2}c^{1} + (3\pi^{2})^{2/3}c^{2} c^{2} c^{2} n_{e}^{2/3} x_{e}^{2} R^{-2/3}\right]^{1/2}, \quad (3)$$

$$x_{e}^{2} = \frac{\varepsilon_{e}^{2}(H) - m_{e}^{2}c^{i}}{2m_{e}c^{2}\mu_{B}H}; \quad R = \frac{3}{2} \left[x_{e} + 2\sum_{n=1}^{l} (x_{e}^{2} - 2n) \right], \quad (4)$$

 $m_e c^2$ — энергия покоя электрона, \hbar — постоянная Планка, $n_e = Zn_A = ZA^{-1}n_B$ — концентрация электронов, n — номер квантового уровня Ландау. Суммирование в (4) ведется, пока $x_e^2 > 2l$.

В Асп-фазе $w = m_A c^2 n_A + w_* + w_n$. С помощью метода, изложенного в [10], плотность энергии вырожденного идеального нерелятивистского нейтронного газа в магнитном поле выразим следующим образом:

$$w_n = 0.4 (3\pi^2)^{2/3} \hbar^2 n_n^{5/3} (2m_n)^{-1} (2.5 x_n R_2 - R_1) R_2^{-5/3} + m_n c^2 n_n, \quad (5)$$

где

$$x_n = \frac{\varepsilon_n(H)}{\mu_n H}; \quad R_2 = \frac{1}{2} \left[(x_n - 1)^{3/2} + (x_n + 1)^{3/2} \right]; \quad \frac{dR_1}{dx_n} = \frac{5}{2} R_2, \quad (6)$$

$$\varepsilon_n(H) = (3\pi^2)^{2/3} \hbar^2 n_n^{2/3} x_n (2m_n)^{-1} R_2^{-2/3}, \qquad (7)$$

 n_n — концентрация нейтронов, m_1 и μ_n — масса и магнитный момент нейтрона. В Aen-фазе $n_B - n_n = An_A = AZ^{-1}n_a$. Поэтому для абсолютно устойчивого состояния [1, 3, 5, 6]

$$\left(\frac{dw}{\partial n_n}\right)_{Z,A;n_B,H} = \left(\frac{\partial w}{\partial Z}\right)_{n_n,A,n_B,H} = \left(\frac{\partial w}{\partial A}\right)_{n_n,Z,n_B,H} = 0.$$
(8)

В этом случае (как и для Ae-фазы) при H = const имеет место однозначное соответствие между Z и A и между A и $\rho \approx m_n n_B$.

Заметим, что в [4, 6] абсолютно устойчивое состояние Аеп-фазы не рассматривалось, а в [3, 5] влияние матнитного поля на нейтронный газ описывалось просто добавлением к плотности энергии $w_n(0)$ слагаемото $\mu_n H$, что не вполне корректно.

Для наглядности и упрощения интерпретации результатов полагаем, как и в [4-6], $H = H_0 \left(\rho / \rho_0 \right)^{2/3}$, где $\rho_0 = 10^{\circ} \text{ г} \cdot \text{см}^{-3}$.

На рис. 1 представлены графики зависимости Z/A от 5 для относительно и абсолютно устойчивых состояний Ае-фазы. Параметры вещества у порогов перехода фаз Ae — Aen приведены в табл. 1. С ростом H_0 у порогов Aen-фазы увеличиваются концентрации ядер и электронов, возрас-

Рис. 1. $1 - H_0 = 0$; $2 - H_0 = 2 \cdot 10^{13}$ Гс; $3 - H_0 = 4 \cdot 10^{13}$ Гс; $4 - H_0 = 5 \cdot 10^{13}$ Гс; I - A = 8; II - A = 27; III - A = 64; IV - A = 125; V - A = 216; для абсолютно устойчивого состояния линии сплошные. Ограничения справа всех линий серий I и II, 1-3 серии III, 1, 2 серий IV, V и сплошных соответствуют порогам Аепфазы; ограничения остальных линий – порогам развала ядер.

тают плотность вещества и величина Z/A, уменьшается энергия Ферми влектронов ε_{\bullet} . Расчеты показывают, что при больших H_{\bullet} , вследствие повышения порогов Aen-фазы и снижения порогов развала ядер, оцениваемых, как и в [1], из условия равенства нулю энергии связи ядра, областьплотностей, соответствующих Aen-фазе, сокращается. Пропуски в табл. 1 соответствуют таким эначениям H_{\bullet} , при которых в плотном замагниченном веществе Aen-фаза вообще не реализуется.

В [4] не учитывалась возможность отсутствия Аеп-фавы, а также рассматривалось магнитное поле с $H_0 = 10^{14}$ Гс, при котором $\rho c^2 <$

Кат во всем диалазоне плотностей Ас-фазы, что вряд ли возможно в реальных условиях.

Таблица 1

ПАРАМЕТРЫ ХОЛОДНОГО ВЕЩЕСТВА В ОТНОСИТЕЛЬНО И АБСОЛЮТНО УСТОЙЧИВЫХ СОСТОЯНИЯХ У ПОРОГА РОЖДЕНИЯ СВОБОДНЫХ НЕЙТРО-НОВ. А. - МАССОВОЕ ЧИСЛО НАИБОЛЕЕ УСТОЙЧИВОГО ЯДРА n., cm - 3 n_A, см⁻³ 2, r.cm - 3 s_, MaB A *H*₀, Γc ZA 0 0.42 15.0 1.5.1031 4.4.1033 5.9.1010 0.42 14.4 2.1012 2.3.1634 6.8.1033 9.0.1010 .8 0.43 4-1013 12.0 9.8.1031 2.8.1034 3.8.1011 5-1013 0.44 10.6 1.3.1035 3.6.1034 4.9.1011 0.37 4.1.1033 1.9.1011 0 21.1 4.1.1034 0.38 19.6 7.0.1034 6.9.1033 3.1.1011 2 1013 :27 4-1013 0.40 15.0 2.3.1035 2.1.1034 9.4.1011 2.4.1034 5.1013 0.41 12.9 2.6.1035 1.1.1012 0 0.34 23.5 5.7.1034 2.6.1033 2.8.1011 21.3 2-1013 0.35 1.0.1035 4.6-1033 4.9.1011 64 15.7 2.9.1035 1.2.1034 1.3.1012 0.38 4.1013 5.1013 0.32 24.1 1.5.1033 3.2.1011 0 6.1.1034 2.8.1033 5.9.1011 2-1013 0.33 21.4 1.2.1035 125 4.1013 8.7.1032 3.2.1011 0.32 23.5 5.7.1034 0 0.33 20.7 1.2.1035 1.8-1033 6.3.1011 2-1013 216 4-1013 3.2.1011 1.6.1033 0 0.32 24.1 6.1.1034 1.2.1035 3.1.1033 5.8.1011 2-1013 0.34 21.5 A_o 4-1013

Результаты работы получены из определенных модельных представлений и предположений, не обязательно соответствующих реальным ситуациям в холодных свержплотных заматниченных астрофизических объектах, поэтому они имеют, в известной степени, качественный характер. Используя результаты [5, 11], легко оценить, что рассматриваемые нами магнитные поля не нарушают приближения вырожденного идеального газа для релятивистских влектронов.

318

В [4] учитывалось влияние кулоновского взаимодействия ядер и электронов на параметры наиболее устойчивых ядер Ас-фазы замагниченного вещества добавлением к плотности энергии w слагаемого [12] $w_k = -1.5 n_A^{4/3} n_0^{-1/3} 0.71 Z^2 A^{-1/3}$, где $n_0 = 1.3 \cdot 10^{36}$ см⁻³. Несложно оценить, что даже у порогов развала ядер w_k/n_A не превышает $14^{0/0}$ величины $0.71 Z^2 A^{-1/3}$ при любых разумных H. Поскольку слагаемое $0.71 Z^2 A^{-1/3}$ не является наиболее существенным в (2), то учет данной поправки не может заметно изменить результаты наших расчетов, но усложнил бы их.

Ядерное взаимодействие компонентов среды для описания сильно замагниченного вещества также вряд ли существенно, т. к. при $H_0 \gtrsim \gtrsim 2 \cdot 10^{13}$ Гс массовая плотность у порога развала ядер на два и более порядка ниже ядерной плотности.

В [13, 14] обсуждался вопрос о возможности наличия в тяжелых ядрах Ас-фазы отрицательных пионов. Сверхсильное матнитное поле препятствует образованию устойчивых ядер с большими *A* и *Z*, повтому данный вопрос, очевидно, снимается в рассматриваемой задаче.

Таким образом, применяемая нами модель невзаимодействующих частиц позволяет достаточно корректно описывать свойства холодного плотного сильно замагниченного вещества.

Авторы признательны А. Д. Чернину и Д. Г. Яковлеву за существенные замечания.

Брестский государственный педагогический институт

THE EQUILIBRIUM STATES OF DEGENERATE MAGNETIZED ELECTRON-NUCLEAR PLASMA

S. S. LIPOVETSKY, V. S. SEKERZHITSKY

Thermodynamic and nuclear parameters of degenerate strong magnetized matter with density $\frac{3}{2} \sim 10^{7} - 10^{13}$ g cm⁻³, stabilized relative to β -processes and picnonuclear reactions are calculated. The correctness of the used independent particle model for similar calculations is discussed.

ЛИТЕРАТУРА

1. Г. С. Саакян, Равновесные конфигурации вырожденных газовых масс, Наука, М., 1972.

2. Ф. Г. Снит, Пульсары, Мир, М., 1979.

3. В. С.: Секержицкий, Г. А. Шульман, Астрофизика, 13, 473, 1977.

- 4. Л. Б. Леинсон, В. Н. Ораевский, Астрон. ж., 56, 1256, 1979.
- 5. В. С. Секержицкий, Кандидатская диссертация, ЛГУ, 1981.
- 6. Г. М. Недялкова, В. С. Секержицкий, С. С. Секержицкий, Г. А. Шульман, в сб. «Исследования по физике звезд», Л., ЛГПИ, 1981, стр. 41.
- 7. Ю. Л. Вартанян, Н. К. Овакимова, Астрон. ж., 49, 306, 1972.
- 8. Л. Б. Леинсон, В. Н. Ораевский, Ядерная физика, 27, 1457, 1978.
- 9. Г. А. Шульман, Астрофизика, 10, 543, 1974; 11, 89, 1975.
- 10. Ю. Б. Румер, М. Ш. Рыбкин, Термодинамика, статистическая физика и кинетика, Наука, М., 1977.
- 11. Г. А. Шульман, В. С. Секержицкий, Астрофизика, 13, 165, 1977.
- 12. В. А. Володин, Д. А. Киржниц, Письма ЖЭТФ, 13, 450, 1971.
- 13. Г. С. Саакян, Л. Ш. Гризорян, Астрофизика, 13, 295, 669, 1977.
- 14. Л. Ш. Григорян, Г. С. Саакян, Астрофизика, 13, 463, 1977.