АСТРОФИЗИКА

АВГУСТ, 1983

ВЫПУСК 3

УДК 524.6—739

К ТЕОРИИ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ ОТ ПРОТЯЖЕН-НОГО ГАЛАКТИЧЕСКОГО ИСТОЧНИКА MONOGEM RING В СОЗВЕЗДИИ ЕДИНОРОГА

В. А. КРОЛЬ

Поступила 18 августа 1982 Принята к печати 27 апреля 1983

Исследуется рентгеновское излучение от источника Monogem Ring, возможным механизмом генерации которого является тепловое тормозное излучение горячего газа, заполняющего внутренний объем сферической ударной волны при вспышке сверхновой звезды. Получено аналитическое выражение для спектров рентгеновских лучей при таком механизме генерации в случаях, когда невозмущенский межзвездный газ, окружающий сверхновую до вспышки, имеет: а) однородное распределение плотности $\rho_0 = \text{const};$ 6) распределение плотности согласно степенному закону $\rho_0 = \rho_{10} (r_{10}/r)^2$, ρ_0 плотность окружающей межзвездной среды. Провзведено сравнение вычисленных спектров с наблюдательными данными, получено хорошее согласие в обоях случаях.

1. Введение. При детальном исследовании фонового рентгеновского излучения было открыто несколько чрезвычайно протяженных (~ 20° в поперечнике) диффузных источников мягкого рентгеновского излучения в Галактике (Monogem Ring, Cygnis Superbuble, Eridanus Hot Spot, расположенные, соответственно, в созвездии Единорога, Лебедя, Эридана и др.) [1—3]. Внутри или в окрестности этих объектов находятся остатки галактических сверхновых (или кандидаты в остатки сверхновых), оболочки Хейля из нейтрального водорода [4], звездные OB-ассоциации (поблизости Мопоgem Ring, например, расположены Моп OB1, Моп OB2). В центре протяженных источников находятся пульсары, излучающие в радио- и рентгеновском диапазонах, а вся область, излучающая мягкие рентгеновские лучи, очерчивается оболочкой из водорода (см. рис. 1). Геометрия этих объектов, расположение окружающих деталей наводят на предположение, что такие горячие газовые пузыри своим происхождением обязаны взрывам тигантских сверхновых звезд.

В настоящей работе развито теоретическое описание рентгеновского излучения от источника Monogem Ring в созвездии Единорога, основанное на привлечении теплового тормозного излучения оптически прозрач-

TOM 19

ного горячего межэвездного газа, заполняющего весь огромный объем сверхпузыря, как основного механизма генерации рентгеновских лучей. На основании теории теплового тормозного излучения космической плазмы с ноомальным химическим составом, в результате изучения структуры горячего газа, заполняющего сверхпузырь в Единороге, получено аналитическое описание зависимости спектра рентгеновских лучей от физических параметров вспышки гипотетической сверхновой Единорога (возможной прародительницы пульсара PSR 0656+14) и ее остатков, а также от физических параметров, характеризующих межзвездную среду до вспышки. Результноующие формулы дают удобную основу для численных расчетов оентгеновских спектров от протяженных галактических источников типа Monogem Ring. Полученные результаты способствуют выяснению природы ренттеновского излучения от исследуемого класса источников и могут быть важными для многих приложений (например, при изучении природы фонового рентгеновского излучения в низкоэнергетической (hy <1 кэВ) области, при исследовании активности галактических ядер и каскадных процессов звездообразования [5]).

2. Наблюдательные данные. Излучающие в рентгеновском диапазоне газовые комплексы в направлении на созвездие Единорога наблюдались несколько раз за последние годы [6, 7]. Карта космического фонового рентгеновского излучения, полученная из наблюдений в рамках А-2 экспеоимента на спутнике «НЕАО-І»*, в области 0.25 коВ с разрешением в 1.5°, показала наличие расширяющейся, чрезвычайно протяженной, пузыреобразной излучающей области в созвездии Единорога (Giant Monoceros Ring) [1-3]. Днаметр этого источника мягкого рентгеновского излучения ~ 20°. Если источник находится на расстоянии в 300 пс, то раднус его ~ 50 пс, а плотность электронов в горячей межзвездной среде. ответственной за генерацию рентгеновских лучей, $n \sim 10^{-2}$ см⁻³. Спектр протяженного источника жесткий, с характерной температурой T ~ (2+3) · 106 К. Общий вид деталей, образующих в проекции гигантское кольцо (см. рис. 1), напоминает (за исключением масштабов) наблюдаемые остатки сверхновых звезд. Размеры пузыря намного превосходят протяженность остатков типичных сверхновых. Подробное описание этого объекта приведено в работе [1], авторы которой называют его Monogem Ring, чтобы отличить его от обычных остатков сверхновых и оболочек из нейтрального водорода в созвездни Единорога.

Внешняя кромка пузыря очерчивается расширяющейся оболочкой из водорода, в которой генерируется радиоизлучение. Возле галактической плоскости в расширяющейся области (в самой яркой ее части) находятся

* «НЕАО-1» — американская специализированная астрономическая обсерватория высоких энергий.

два объекта, напоминающие остатки сверхновых: Петля Единорога (Мопосегоз Loop), излучающая в радиодиапазоне, и радиоисточник PKS 0646+16, которые, по-видимому, представляют собой суперпозицию двух разных остатков сверхновых звезд. Радиокартина этой части расширяющегося пузыря усложняется присутствием сильного радиоисточника NGC 2264. Расстояние до Петли Единорога оценивается в 700 пс, до источника PKS 0646+16 — в 2.3 кпс. Трудно установить, с какими газовыми

Рис. 1. Схема расположения деталей, образующих гигантское кольцо в созвездня: Единорога [3].

комплексами в созвездии Единорога ассоциируется источник мягкого диффузного рентгеновского излучения. Если рентгеновские лучи своим происхождением обязаны Петле Единорога, то горячий газ, излучающий их, не совпадает с положением радиоизлучающей области Мопосегоз Loop. Если область генерации рентгеновских лучей совпадает с радиоисточником PKS 0646+16, то изблюдение жесткого излучения с внертией 0.25 квВ (которое присутствует в спектре источника Monogem Ring) не представляется возможным из-за поглощения его межзвездной средой на луче эрения.

Необходимо отметить группировку оболочек из нейтрального водорода на кромке расширяющегося пузыря. Выделяются три газовые супероболочки Хейля (supershells): GS 200+05+23 (на расстоянии в 4.8 кпс); GS 203+02-11 (на расстоянии в 0.5 кпс; вта оболочка, по-видимому, связана со звездной ассоциацией Моп OB1, находящейся на расстоянии в

485

715 пс); GS 215+06—13 (эта оболочка лежит за пределами расширяющегося пузыря). Подробное описание физических параметров (размеров. массы, скорости расширения, кинетической энергии, возраста) таких H I оболочек, наблюдаемых в высокоширотных областях ($|b| > 10^\circ$) Галактики, приведено в [4].

Радиопульсар PSR 0656+14 находится возле геометрического центра расширяющейся области. Это молодой пульсар, период его P = 0.385 с. Скорость dp/dt изменения периода пульсара неизвестна. Расстояние до PSR 0656+14 ~ 300 пс. Рентгеновское излучение от него было зафиксировано спутником «НЕАО-2». Идентифицировать наблюдательные данные по излучению от пульсара в радио- и рентгеновском диапазонах пока не удается.

Из наблюдений можно сделать вывод, что Monogem Ring представляет собой расширяющийся остаток сверхновой звезды, возможной прародительницы пульсара PSR 0656+14. Предполагаемые физические параметры гипотетической сверхновой Единорога приведены в работе [1]. Расстояние до этого нестационарного объекта оценивается из эффекта поглощения. Из-за неоднородности межзвездной газовой среды в галактическом диске, а также из-за неоднородностей на самой оболочке оценки расстояния могут существенно колебаться (см. табл. 1).

			Таблица 1
	Обозна- чение	Нижний предел	Верхний предел
Расстояние (пс)	d	30	500
Раднус (пс)	' R	5	80
Энергия (эрг)	E ₀	1048	1051

Рентгеновское излучение от протяженного источника Monogem Ring, по-видимому, генерируется разреженным ($n \sim 10^{-2}$ см⁻³) горячим, полностью ионизированным межзвездным газом с температурой $T \sim (2-4) \times 10^{6}$ К, заполняющим весь огромный объем сверхпузыря.

3. Структура возмущенной газовой среды за фронтом ударной волны при вспышке сверхновой. При вспышке сверхновой в межзвездный газ с плотностью ρ_0 , окружающий звезду, выбрасывается со скоростью v_0 звездное вещество с энергией E_0 . Обычно предполагается, что разлет сбрасываемой оболочки происходит сферически-симметрично. Сферический ударный фронт радиуса R, отделяющий расширяющееся звездное вещество от невозмущенной окружающей среды, распространяется со скоростью $V = 4/3 v_0$. Расширяющееся вещество в результате взаимодействия с окружающей средой замедляется и нагревается. Пересекая ударный фронт, хо-

лодный межзвездный газ сжимается и нагревается: происходит трансформация кинетической энергии поступательного движения сбрасываемого вешества в тепловую энергию возмущенной газовой среды.

Распространение сильных ударных волн в межзвездной среде при условии, что t > t., где t., соответственно, время охлаждения и время расширения возмущенного газа за ударным разрывом, описывается газодинамическими адиабатическими уравнениями.

$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial r} + \frac{1}{\rho} \frac{\partial P}{\partial r} = 0,$$

$$\frac{\partial \rho}{\partial t} + v \frac{\partial (\rho v)}{\partial r} + 2 \frac{\rho v}{r} = 0,$$

$$\frac{\partial}{\partial t} \left(\frac{P}{\rho^{T}}\right) + v \frac{\partial}{\partial r} \left(\frac{P}{\rho^{T}}\right) = 0,$$
(1)

с граничными условиями на фронте:

$$\rho_1 = \frac{\gamma + 1}{\gamma - 1} \rho_0, \quad \upsilon_1 = \frac{2}{\gamma + 1} V, \quad \frac{1}{2} \rho_1 \upsilon_1^2 = \frac{P_1}{\gamma - 1}.$$
(2)

Здесь $\gamma = c_{\rho}/c_{v}$, индексами "0", "1" обозначены значения плотности ρ , давления P, скорости газа v, соответственно, перед и непосредственно за фронтом волны.

При 7 = 5/3 с учетом (2), (16)

$$t_{ex} \sim 10^{-12} \frac{R}{\sqrt{T}} \text{ Aet,}$$

$$t_{e} \sim 10^{4} \frac{\sqrt{T}}{R} \text{ Aet.}$$
(3)

При оценочных значениях R, T, n, следующих из наблюдений для Monogem Ring (см. раздел 2), условие $t_c > t_{ex}$ выполняется. Система уравнений (1) с граничными условиями (2) решается автомодельным методом [8] в случае, когда невозмущенная плотность ρ_0 межзвездного газа до вспышки сверхновой звезды описывается формулами:

a)
$$\rho_0 = \text{const}$$
 (4)

- однородное распределение плотности,

5)
$$\rho_0 = \rho_{10} \left(\frac{r_{10}}{r}\right)^2$$
 (5)

— плотность невозмущенного газа убывает от звезды по степенному закону. 7—682 В случае, когда $\rho_0 = \text{const}$, приближенное решение системы газодинамических уравнений (1) имеет вид [9]

$$\rho(r) \simeq 0.34 \,\rho_1 \left(\frac{r}{R}\right)^{9/2} \left[1 + 0.87 \left(\frac{r}{R}\right)^{13/2}\right],$$
(6)

$$T(r) = 0.88 T_1 \left(\frac{r}{R}\right)^{9/2} \left[1 + 0.11 \left(\frac{r}{R}\right)^{13/2}\right],$$
 (6a)

где при $\gamma = 5/3$

$$\rho_1 = 4\rho_0, \tag{7}$$

$$T_1 = 2.6 \cdot 10^{-10} \left(\frac{E_0}{\rho_0}\right)^{2/5} t^{-6/5} = 4.5 \cdot 10^{-10} \frac{E_0}{\rho_0} R^{-3}, \tag{8}$$

$$R = 1.2 \left(\frac{E_0}{\rho_0}\right)^{1/5} t^{2/5}.$$
 (9)

При степенном убывании ρ₀ (5) интересующее нас распределение плотности и температуры в возмущенной ударной волной межзвездной среде определяется выражениями [10]

$$\varphi(r) = \varphi_1 \frac{r}{R}, \qquad (10)$$

$$T(\mathbf{r}) = T_1 \left(\frac{\mathbf{r}}{R}\right)^2. \tag{11}$$

Эдесь

$$\gamma_1 = 4 \varphi_0 (R) = 4 \varphi_{10} (r_{10}/R)^2, \qquad (12)$$

$$T_{1} = 3.1 \cdot 10^{-10} \left(\frac{E_{0}}{\rho_{10} r_{10}^{2}}\right)^{2/3} t^{-2/3} = 2.4 \cdot 10^{-10} \left(\frac{E_{0}}{\rho_{10} r_{10}^{2}}\right) R^{-1},$$
(13)

$$R = 0.8 \left(\frac{E_0}{\rho_{10} r_{10}^2}\right)^{1/3} t^{2/3}.$$
 (14)

Графическое выражение решений (6), (6а), (10), (11) системы (1) представлено на рис. 2.

От поведения температуры газа T(r) за фронтом ударной волны (см. рис. 2) будет зависеть в дальнейшем выбор'пределов интегрирования при вычислении рентгеновских спектров (см. равдел 4).

4. Рентленовское излучение возмущенного ударной волной газа. Газовая среда непосредственно за фронтом ударной волны при вспышке сверхновой нагревается до температуры

$$T_1 = 3m V^2 / 16 k_{,}$$
 (15)

488

где m — масса атома водорода, k — постоянная Больцмана. Для значений V, лежащих в интервале $(1 \div 10) \cdot 10^3$ км/с, величина $T \sim (10^7 \div 10^9)$ К. Из-за диссипативных процессов скорость фронта ударной волны V, а значит и температура газа непосредственно за ним T_1 , уменьшается с течением времени.

Рис. 2. Распределение плотности $\rho(r)$ и температуры T(r) в возмущенной удар ной волной межзвездной среде для случаев (а) и (b).

Газ с температурой $T \gtrsim 10^6$ К излучает в рентгеновском диапазоне. При $T > 10^7$ К можно считать [11], что рентгеновское излучение в основном обусловлено тепловым тормозным излучением влектронов. При температурах 10^6 К $< T \le 6 \cdot 10^6$ К существенным в спектре становится вклад от эмиссии в спектральных линиях. Если тяжелые влементы мало распространены^{*}, то их линии не искажают общего вида непрерывного эмиссионного спектра горячего газа и возможно хорошее согласие теоретически рассчитанного спектра теплового тормозного излучения газа с наблюдаемым от космических источников.

Будем считать, что тепловое тормозное излучение оптически прозрачного горячего газа, заполняющего внутренний объем сферической ударной волны при вопышке сверхновой, является основным механизмом генерации рентгеновских лучей в источнике Monogem Ring.

Интенсивность теплового тормозного излучения единицы объема космической плазмы, состоящей на 90% из водорода и на 10% из гелия, описывается формулой

$$f(\rho, T) = q_0 T^{1/2} \rho^2 \text{ opr } cm^{-3} c^{-1}, \qquad (16)$$

здесь $q_0 = 6.0 \cdot 10^{20}$ врг см³ с⁻¹ г⁻² град^{-1/2}, усредненный фактор Гаунта $\bar{g}_{tt}(v, T) = 1.2$.

Для дифференциальной излучательной способности плазмы f(hv) имеем

* Незначительное содержавие тяжелых элементов может объясняться тем, что ваметная доля их уходит из межавездного газа при образовании межазвездной пыли.

$$f(h\nu) = f(\rho, T) \frac{h}{kT} \exp\left(-\frac{h\nu}{kT}\right) \operatorname{spr} \operatorname{cm}^{-3} \operatorname{c}^{-1} \Gamma \operatorname{g}^{-1}.$$
(17)

Спектр рентгеновских лучей, обусловленный тепловым тормозным излучением горячего газа, представляется формулой

$$F(hv) = 4\pi \int r^2 f(hv) dr, \qquad (18)$$

где интегрирование в случае однородной плотности (?0 (r) = const) невозмущенного газа при вспышке сверхновой ведется от 0 до R. В случае, когда плотность Р0 убывает по степенному закону (5), интегрирование ведется от r_0 до R (значение r_0 определяется из формулы (11) при условии $T(r_0) = 10^6$ K = $T^{(6)}$, поскольку относительный вклад потерь энергии на излучении при свободно-свободных переходах в слоях газа с $T < 10^6$ K становится незначительным по сравнению, например, с вкладом, вносимым вмиссией в спектральных линиях).

Обозначим спектры рентгеновского излучения от горячей расширяющейся области за фронтом ударной волны при вспышке сверхновой в случаях (a) и (b), соответственно, через $F^{(a)}(hv)$ и $F^{(b)}(hv)$.

В результате интегрирования для $F^{(4)}(h\nu)$ из (18), с учетом (6), (6а), (16) и (17), получаем соотношение

$$F^{(a)}(h\nu) = 9.4 \cdot 10^{-2} \pi q_0 \frac{h\rho_1^2}{k \sqrt{T_1}} R^3 \left(\frac{k T_1}{h\nu}\right)^{19/6} \Phi(h\nu, T_1), \quad (19)$$

где

$$\Phi(h\nu, T_{1}) = \gamma \left(\frac{19}{6}, \frac{h\nu}{0.88k T_{1}}\right) + 1.74 \left(\frac{0.88 k T_{1}}{h\nu}\right)^{13/9} \times \\ \times \gamma \left(\frac{83}{18}, \frac{h\nu}{0.88 k T_{1}}\right).$$
(20)

Здесь ү (а, z) — неполная гамма-функция [12—13]:

$$\gamma(u, z) = \int_{0}^{\infty} e^{-t} t^{a-1} dt, \quad \text{Re } a > 0.$$
 (21)

Учитывая зависимость R(t) и $T_1(t)$, запишем $F^{(a)}(hv)$ в виде

$$F^{(\alpha)}(h\nu) = 7.2 \cdot 10^{-26} \pi q_0 h \varphi_0^2 k^{13/6} (h\nu)^{-19/6} \left(\frac{E_0}{\rho_0}\right)^{5/3} t^{-2} \Phi(h\nu, T_1).$$
(22)

Как видно из фсрмул (20), (22) и (8), (9), спектр рентгеновского из лучения $F^{(a)}(h\nu)$ определяется набором параметров (E_0 , P_0 , R) или (P_0 , R, T_1). Из (22) видно также, что интенсивность излучения в модели (a) уменьшается с ростом t, так как $F^{(a)}(h\nu) \sim t^{-2}$.

Спектральное распределение исследуемого рентгеновского излучения изменяется со временем, так как температура непосредственно за фронтом волны T_1 зависит от времени. Следовательно $\Phi(h\nu, T_1)$ меняется с течением времени, изменяя при этом характер спектра. Для $F^{(b)}(h\nu)$ в результате интегрирования из (18), с учетсм (10), (11), (16) и (17) получаем выражение

$$F^{(b)}(h\nu) = \frac{\pi q_0 k_1^2 h}{k \sqrt[4]{T_1}} R^3 \left\{ \left(\frac{h\nu}{kT_1}\right)^2 \left[Ei\left(-\frac{h\nu}{kT^{(6)}}\right) - Ei\left(-\frac{h\nu}{kT_1}\right) \right] + \left(1 - \frac{h\nu}{kT_1}\right) \exp\left(-\frac{h\nu}{kT_1}\right) - \left(\frac{T^{(6)}}{T_1}\right)^2 \left(1 - \frac{h\nu}{kT^{(6)}}\right) \exp\left(-\frac{h\nu}{kT^{(6)}}\right), \quad (23)$$

где Ei(-z) — интегральная показательная функция [12]:

$$Ei(-z) = -\int_{z}^{\infty} \frac{e^{-x}}{x} dx.$$
 (24)

Численные расчеты по формуле (23) для h^{ν} , лежащих в интервале 0.1 кэВ $\leq h^{\nu} \leq 1$ кэВ и $T_1 \sim a T^{(6)}$ (a = 2, 3, 4,...) показывают, что

$$\left| Ei\left(-\frac{h\nu}{kT_{1}}\right) \right| \gg \left| Ei\left(-\frac{h\nu}{kT^{(6)}}\right) \right|, \qquad (25)$$

$$\left| \left(1 - \frac{h\nu}{kT}\right) \exp\left(-\frac{h\nu}{kT}\right) \right| \gg \left(\frac{T^{(6)}}{T_{1}}\right)^{2} \left| \left(1 - \frac{h\nu}{kT^{(6)}}\right) \exp\left(-\frac{h\nu}{kT^{(6)}}\right) \right|$$

С учетом (25) в интересующей нас области энергий (0. 1 кэВ≲ hv≲ ≲1 кэВ) формула (23) упрощается и принимает вид

$$F^{(b)}(h\nu) = \frac{\pi q_0 p_1^2 h}{k \sqrt{T_1}} R^3 \left\{ \left(1 - \frac{h\nu}{kT_1}\right) \exp\left(-\frac{h\nu}{kT_1}\right) - \left(\frac{h\nu}{kT_1}\right)^2 Ei\left(-\frac{h\nu}{kT_1}\right) \right\}.$$
(26)

Здесь р₁ определяется соотношением (12).

Учитывая зависимость $T_1(t)$ (13) и R(t) (14) для $F^{(b)}(h\nu)$ из (26) получаем

$$F^{(b)}(h\nu) = 1.2 \cdot 10^{6} \pi q_{0} \frac{h}{k} \left(\frac{P_{10}^{8} r_{10}^{16}}{E_{0}^{2}}\right)^{1/3} \times \left[\left(1 - \frac{h\nu}{kT_{1}}\right) \exp\left(-\frac{h\nu}{kT_{1}}\right) - \left(\frac{h\nu}{kT_{1}}\right)^{2} Ei\left(-\frac{h\nu}{kT_{1}}\right) \right].$$
(27)

Из (23), (27), (13), (14) видно, что спектр $F^{(b)}(h\nu)$ определяется набором параметров (E_0 , $\rho_{10}r_{10}^2$, R) или ($\rho_{10}r_{10}^2$, R, T_1). Интенсивность исследуемого рентгеновского излучения, как видно из (27), уменьшается с ростом $t: F^{(b)}(h\nu) \sim t^{-1/3}$.

Спектральное распределение рентгеновского излучения определяется выражением

$$\Gamma(h\nu, T_1) = \left(1 - \frac{h\nu}{kT_1}\right) \exp\left(-\frac{h\nu}{kT_1}\right) - \left(\frac{h\nu}{kT_1}\right)^2 Ei\left(-\frac{h\nu}{kT_1}\right).$$
(28)

Так как T_1 зависит от времени (см. соотношение (13)), то $\Gamma(h\nu, T_1)$ меняется с течением времени, изменяя при втом спектральное распределение исследуемого излучения.

Таким образом, построенные спектры $F^{(a)}(hv)$, $F^{(b)}(hv)$ являются спектрами рентгеновского излучения с переменной интенсивностью и систематически изменяющимся спектральным индексом. Из-за поглощения в межзвездном газе спектр обрезан со стороны малых внергий. С учетом этого вффекта [14] величина потока в окрестности Земли дается формулой

$$S^{(a), (b)}(h\nu) = \frac{F^{(a), (b)}(h\nu) \exp\left[-N_H \sigma_{ph}(E_{\nu})\right]}{4\pi d^2},$$
 (29)

(31)

где сечение фотоэффекта о (E,) определяется выражением [11]

$$\sigma_{ph}(E_*) = \begin{cases} 0.6 \cdot 10^{-22} E_*^{-3} \, \text{cm}^{-2}, & 0.1 \, \text{k} \cdot \text{B} \leq E_* \leq 0.53 \, \text{k} \cdot \text{B}; \\ 2.0 \cdot 10^{-22} E_*^{-2.5} \, \text{cm}^{-2}, & 0.53 \, \text{k} \cdot \text{B} \leq E_* \leq 8 \, \text{k} \cdot \text{B}. \end{cases}$$
(30)

d — расстояние до источника, $N_H = \langle n_H d \rangle$, n_H — концентрация атомов водорода в межзвездном газе по лучу-зрения.

На рис. З представлены наблюдательные данные по рентгеновскому излучению от гигантского газового пузыря в созвездии Единорога (источника Monogem Ring [7]). По оси ординат (в логарифмической шкале) отложена величина фиксируемого счетчиком потока S^{ν} в единицах: [S_{ν}] = число событий/къВ с. Энергопоток от Monogem Ring в окрестности Земли в области $h_{\nu} \leq 0.28$ къВ составляет [7]

$$100 \div 140 \frac{\phi o t o hob}{cm^2 c кэB ctep}$$

492

Эдесь на рис. З для сравнения представлено графическое выражение энергопотоков $S^{(a)}(h\nu)$, $S^{(b)}(h\nu)$, рассчитанных по формулам (19), (23) и (29), в единицах: $[S^{(a), (b)}(h\nu)] =$ число фотонов/см³ с кэВ. Определяющие модель параметры при численных расчетах $S^{(a)}(h\nu)$ и $S^{(b)}(h\nu)$ выбирались так, чтобы теоретически полученные значения энергопотоков в окрестности Земли на уровне $h\nu \leq 0.28$ кэВ были равны наблюдаемому значению (31).

Рис. 3. Данные наблюдений S, от источника Monogem Ring [7]. Зависимость $S^{(a)}(h\nu)$ и $S^{(b)}(h\nu)$, соответственно, при следующих значениях определяющих модель параметров: (a) $d \sim 300$ пс, R = 50 пс, $T_1 = 3 \cdot 10^6$ K ($E_0 = 1.2 \cdot 10^{52}$ эрг), $\rho_1 = 2 \cdot 10^{-24}$ г/см³, $N_H = 1.5 \cdot 10^{19}$ см⁻²; (b) $d \sim 300$ пс, R = 50 пс, $T_1 = 3 \cdot 10^6$ K ($E_0 = 1.2 \cdot 10^{52}$ эрг), $\rho_1 = 7.2 \cdot 10^{-24}$ г/см³, $N_H = 1.5 \cdot 10^{19}$ см⁻²; (b) $d \sim 300$ пс, R = 50 пс, $T_1 = 3 \cdot 10^6$ K ($E_0 = 7.2 \cdot 10^{51}$ эрг), $\rho_1 = 6.7 \cdot 10^{-25}$ г/см³, $N_H = 2.0 \cdot 10^{19}$ см⁻².

Наблюдения велись с помощью пропорционального рентгеновского счетчика [7], вычисленные энергопотоки $S^{(a)}(hv)$ и $S^{(b)}(hv)$. а также данные наблюдений представлены на рис. З в логарифмической шкале, следовательно, спектральное распределение рентгеновского излучения горячего газа за фронтом сферической ударной волны при вспышке сверхновой в случаях (а) и (b) хорошо согласуется (см. рис. 3) с наблюдаемым спектральным распределением излучения от источника Monogem Ring. Это свидетельствует о том, что механизмом генерации излучения в источнике Monogem Ring является тепловое тормозное излучение горячего газа за фронтом ударной волны, распространяющейся по межзвездной среде при вспышке сверхновой, а формулы (19), (23) при соответствующих значениях, определяющих модель параметров, хорошо описывают наблюдаемый спектр рентгеновских лучей. На выбор модели (а) или (b), по-видимому. должно указывать распределение поверхностной яркости исследуемого излучения в источнике.

В. А. КРОЛЬ

Формулы (19), (23) могут быть использованы при описании рентгеновского излучения от других протяженных источников типа Monogeni Ring. Таких расширяющихся областей, заполненных горячим газом и излучающих мягкие рентгеновские лучи, может быть весьма много в Галактике.

Институт теоретической физики АН УССР

ON THE THEORY OF X-RAY EMISSION FROM THE EXTENDED GALACTIC MONOGEM RING SOURCE IN MONOCEROS CONSTELLATION

V. A. KROL'

X-ray emission from the Monogem Ring source which is explained by thermal bremsstrahlung of the hot optically thin gas filling the inside volume of the shock wave under Supernova burst is studied. An analytical expression for X-ray spectrum is obtained in the following cases:

a) The surrounding gas has a uniform mass density ρ_0 ;

b) The interstellar gas has the density decreasing from Supernova as $r_0 = \rho_{10} (r_{10}/r)^3$. The calculated spectra agree well with the observed data for Monogem Ring source.

ЛИТЕРАТУРА

- J. A. Nousek, L. L. Cowie, E. M. Hu, C. Y. Lindblad, G. P. Garmire, Ap. J., 248, 152, 1981.
- 2. S. Naranan, S. Shulman, H. Friedman, G. Fritz, Ap. J., 208. 718, 1976.
- 3. Sky and Telescope, 63, 145, 1982.
- 4. E. M. Hu, Ap. J., 248, 119, 1981.
- N. N. Bunber, S. P. Coleman, W. L. Kraushaar, D. Mc Cammon, F. O. Willtamson, Ap. J., 179, 781, 1973.
- 6. H. B. Ogelman, S. P. Maran, Ap. J., 209, 124, 1976.
- 7. K. S. Long, W. E. Moor, J. R. Patterson, G. P. Garmire, Ap. J., 212, 427, 1977.
- 8. Л. И. Селов, Методы подобия и размерности в механике, Наука, М., 1977.
- 9. O. Bollea, A. Cavaliere, Astron. Astrophys., 46, 219, 1976.
- 10. M. H. Rogers, Ap. J., 125, 478, 1957.
- 11. С. Хаякава, Физика космических лучей, ч. 2, Астрофизический аспект, Мир. М., 1975.
- 12. Е. Янке, Ф. Эледе, Ф. Леш, Специальные функции, Наука, М., 1975.
- 13. В. И. Пагуроза, Таблицы неполной гамма-функции, В. Ц. АН СССР, М., 1963.
- 14. Л. М. Озерной, О. Ф. Прилуцкий, И. Л. Розенталь, Астрофизнка высоких энергии. Атомиздат, М., 1973.