• АСТРОФИЗИКА

TOM 19

ФЕВРАЛЬ, 1983

ВЫПУСК 1

УДК 524.7—355

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ИРРЕГУЛЯРНОЙ ГАЛАКТИКИ NGC 2814

Н. К. АНДРЕАСЯН Поступила 22 сентября 1982 Принята к печати 6 ноября 1982

Представлены результаты спектрофотометрического исследования двух нанболее ярких сгущений в галактике NGC 2814. Спектры получены на 2.6-м телескопе КрАО (дисперсия ≈ 100 А/мм) и на 6-м телескопе САО АН СССР (дисперсия ≈ 65 А/мм). Условия ионизации и возбуждения в сгущениях NGC 2814 похожи на таховые в нормальных Н II областях. Определены электронные плотности и электронные кокцентрации изованного газа: $T_e \simeq 10^4$ K; $N_e \simeq 380$ см⁻³ в центральном слущении и $T_e \simeq 7.7 \cdot 10^3$ K; $N_e \simeq 260$ см⁻³ в северном. Внутреннее поглощение в центральной области, по-видимому, порядка 1^m87, в северном же сгущении заметное внутреннее поглощение не обнаруживается. По химическому составу северное сгущение не отличестся заметно от галактических Н II областей, а в центральной области есть некоторый дефицит тяжелых элементов. Делается заключение о присутствии очагов звездообразования в NGC 2814.

1. Введение. NGC 2814 — одна из четырех галактик, составляющих группу Ho 124, главным членом которой является большая спиральная галактика NGC 2805 [1]. По морфологическим признакам NGC 2814 отнесена к классу Iгг II или, что то же самое, I0 по Вокулеру [2, 3]. На прямых фотографиях втой галактики обнаруживаются три сгущения, и кривая вращения имеет необычный изгиб в участке, соответствующем сгущению, находящемуся на расстоянии 8" к северу от центра галактики [4]. На осчовании спектроскопических данных и на анализе кривой вращения в работе [4] делается предположение о том, что северное сгущение является гигантской H II областью, которая, вероятно, вращается автономно. Для дальнейшего выяснения характера излучающих областей NGC 2814 проведена спектрофотометрия втой галактики. Результаты приводятся в настоящей статье.

2. Наблюдательный материал. Для спектрофотометрии использованы десять спектрограмм галактики NGC 2814, полученные в фокусе Несмита ЭТШ Крымской обсерватории с дифракционным спектрографом и ЭОП типа УМ-92, а также в первичном фокусе БТА Специальной астрофизической обсерватории АН СССР со спектрографом СП-160 и ЭОП типа М9Щ-В.

На ЭТШ, 23.3 и 24.3.1979 г., получены шесть спектрограмм NGC 2814 с дисперсией примерно 100 А/мм, спектральное разрешение около 6 А, ширина щели спектрографа во время наблюдений была равна 1. 85. Снимались две области спектра, центрированные на линии Н_« и H_β.

На БТА получены четыре спектрограммы NGC 2814, охватывающие области спектра 3700—5050 А, 4800—6000 А и 5800—7000 А, средняя дисперсия 65 А/мм, спектральное разрешение примерно 5 А. Более подробные сведения об этих спектрах можно найти в работе [4]. Все использованные для спектрофотометрии спектрограммы получены при ориентировке щели спектрографа вдоль большой оси галактики. На рис. 1 показаны репродукции спектрограмм галактики NGC 2814, полученные на БТА (область 5800—7000 А) и на ЗТШ (область около линии H_β).

Для калибровки спектральной чувствительности системы БТА наблюдались стандартные звезды Feige 34 и HZ 15, спектрофотометрические данные о которых приведены в работе [5]. Кривые спектральной чувствительности системы ЭТШ со спектрографом и ЭОП построены по спектрам стандартных звезд, любезно предоставленным К. К. Чуваевым.

Непрерывный спектр северного сгущения слаб и в основном недодержан, поэтому, во избежание больших фотометрических ошибок, характеристические кривые построены в виде зависимости $I = f(\omega)$, которая остается прямолинейной и при низких плотностях почернения [6]. Величина ω выражается через плотность почернения формулой

$$\omega = \lg (10^D_i - 1).$$

Поправки за покраснение вычислены по формуле

$$\lg (I_{\lambda}/I_{H_{\beta}})_{\text{scop.}} = \lg (I_{\lambda}/I_{H_{\beta}})_{\text{scop.}} + C (H_{\beta}) f(\lambda).$$

Функция $f(\lambda)$ для нормального закона поглощения затабулирована в работе [7], а ковффициенты $C(H_{\beta})$ вычислены путем сравнения наблюдаемого бальмеровского декремента с теоретическим в предположении, что бальмеровские линии имеют рекомбинационное происхождение. Теоретическое значение бальмеровского декремента (случай В, $T_{\bullet} = 10^4$) приведены в работе [8].

Спектрограммы записаны с помощью микрофотометра ИФО-451 пс двум сечениям, соответствующим двум областям NGC 2814 — центральной части и северному сгущению. Эти области обозначены буквами «А» и «В» на рис. 2, где показаны изоденсы галактики в U, B и V цветах. Изоденсы построены с помощью микроденситометра PDS-1010 на факсимильном

СПЕКТРОФОТОМЕТРИЯ ИРРЕГУЛЯРНОЙ ГАЛАКТИКИ

устройстве «Штрих-М» по фотографиям, полученным в первичном фокусе 2.6-м телескопа Бюраканской обсерватории. UBV-система осуществилась следующим сочетанием пластинок и фильтров: U — ORWO Zu 21 + УФС-3; B — ORWO Zu 21 + BC-3; V — Kodak 103a D + ЖС-18. Эта система не воспроизводит в точности международную UBV-еистему, но близка к ней. Экспозиции при наблюдениях были 50, 40 и 45 мин, соответственно в U, B и V цветах. Градация плотностей одинакова на рис. 2 во всех трех цветах

3. Результаты наблюдений. На рис. 2 отчетливо видны три конденсации, отмеченные в [4]. Примечательно, что в V цвете северная конденсация почти не заметна. Спектры северного и центрального сгущений на спектрограммах четко разделяются друг от друга и фотометрированы отдельно. В обоих спектрах наблюдаются одни и те же линии, однако линии H₁ и H₈ в спектре северного сгущения наблюдаются в эмиссии, а в спектре центральной области — в абсорбции. Эмиссионные линии в обоих спектрах неширокие, профили линий инструментальные. В табл. 1 приведены наблю-

Таблица Т

Линия	A			В		
		$(I_{\lambda}/I_{H_{\beta}})_{\text{Hed}\lambda}$	$(I_{\lambda}/I_{H_{\beta}})_{monp.}$	IV I	$(I_{\lambda}/I_{H_{\beta}})_{Haga.}$	$(I_{\lambda}/I_{H_{\beta}})_{\text{scop}}.$
6731 [S II]	6.20	0.83	0.34	32.01	0.32	0.27
6717 [S II]	7.11	0.93	0.39	38.07	0.37	0.32
6584 [N II]	7.61	1.19	0.54	36.42	0.42	0.36
6563 Ha	41.00	6.25	2.87	251.32	3.30	2.87
6548 [N II]	1.38:	0.38:	0.18:	13.05	0.16	0.13
5007 [O III]	9.08	2.12	1.95	62.30	1.47	1.44
4959 [O III]	3.18	0.71	0.67	22.41	0.53	0.32
4861 Hs	3.95	1.00	1.00	38.03	1.00	1.00
4340 Hr		-		21.04	0.44	0.46
4340 H _T a	1.34:		· · · ·	-		1 - 21-
4102 Ha				1.87	0.11	0.12
4102 Ha a	0.93:	he	- 74			
3727 [O II]	11.67	3.45	6.48	50.61	1.57	1.77
С (На)	114	0.91	1	1	0.16	

ЭКВИВАЛЕНТНЫЕ ШИРИНЫ И ОТНОСИТЕЛЬНЫЕ ИНТЕНСИВНОСТИ ЛИНИЙ В СПЕКТРЕ ГАЛАКТИКИ NGC 2814

даемые и исправленные за покраснение значения относительных интенсивностей и эквивалентных ширин спектральных линий областей A и B. усредненные по всем спектрограммам. В последней строке таблицы приведены значения логарифмического ковффициента покраснения в линии H_β.

47

Ошибка определения относительных интенсивностей в среднем поря, ка 10—15%, а для самых слабых линий достигает 25—30%, такие знач ния в таблице отмечены двоеточием. Буквой «а» в таблице обозначен абсорбционные линии.

Некоторые важные спектрофометрические данные для рассматрива мых областей приведены в табл. 2.

	Tab.	лица 2
Параметр	A	B
Индекс возбуждения r=I ([O III])//([() II])	0.37	1.10
Индикатор Т. I([O III]+[O II])// Н3)	6.80	3.73
Индикатор T. J([O III])/J([N II])	3.64	4.00
Индикатор N. I([SII] 6717)/I([SII] 6731)	1.15	1.18
/(Ha)//([N II])	3.58	5.85

Степень возбуждения обеих областей, как видно из табл. 2, невысо кая, такое возбуждение могло бы вызываться излучением горячих звез. Отношение $I(H_{\alpha})/([N II])$ в основном зависит от химического состав и механизма ионизации — при фотоионизации и нормальном химическо составе $J'(H_{\alpha})/([N II])$ порядка трех [9]. Приведенные в табл. 2 зна чения этого отношения характерны для рукавов спиральных галактик, ядерных же областях они уменьшаются до значений меньше единици [10, 11].

4. Механизм ионизации и физические условия. Как видно из табл. наблюдаемый бальмеровский декремент области А значительно круче, че в области В, что, вообще говоря, может быть обусловлено разными меха низмами ионизации или различиями в поглощении. Наблюдаемый баль меровский декремент области В соответствует механизму фотоионизации под влиянием излучения горячих звезд, причем внутреннего поглощения. практически нет и бальмеровский декремент искажен только галактически поглощением (C = 0.16).

Большую крутизну бальмеровского декремента в области A можн попытаться объяснить либо действием механизма ионизации под влияние ударов тепловых влектронов, либо поглощением в самой галактике при ме ханизме фотоионизации. Однако при ионизации ударами тепловых влек тронов, наряду с линиями [O II] λ 3727 и [O III] λ 5007, 4959, наблюда лись бы линии [O I] λ 6300, 6364, причем интенсивность последних был бы больше или, по крайней мере, порядка интенсивностей линий [O II] [O III] при любом подборе влектронной температуры и плотности излу чающей среды [12, 13]. Линии O I в спектре NGC 2814 не обнаруживаютс

Рис. 1. Спектр галактики NGC 2814: а) область 5800—7000 А, получен в порын ном фокусе БТА, b) область сколо литии Н3, получен в фокусе Несмита ЗТШ.

Рис. 2. Изоденсы галактики NGC 2814 в UBV цветах, масштаб ~ "/мм, север сверху.

К ст. Н. К. Андреасян

СПЕКТРОФОТОМЕТРИЯ ИРРЕГУЛЯРНОЙ ГАЛАКТИКИ

и, кроме того, на классификационных диаграммах, приведенных в работе Болдуияа и др. [14], точки, соответствующие сгущениям А и В, попадают в область «нормальных». Н II областей. Таким образом, можно считать, что в области А, как и в области В, ионизация происходит под влиянием излучения горячих звезд, а бальмеровский декремент в области А искажен в основном внутренним поглощением. Судя по логарифмическому коэффициенту покраснения (табл. 1), влияние поглощения в центральной области NGC 2814 достигает значения 1^m87 в линии H₃.

По эквивалентной ширине линии H₃ и цвету H II области можно приблизительно оценить эффективную температуру ионизующих газ звезд [15, 16]. Для центральной и северной областей NGC 2814 получаются $2.5 \cdot 10^4 \text{ K} \ll T_{***} \ll 3 \cdot 10^4 \text{ K} \rtimes 3 \cdot 10^4 \text{ K} \ll T_{***} \ll 3.5 \cdot 10^4 \text{ K}$ соответственно.

В спектрах обеих областей авроральные линии не наблюдаются, и непосредственно определить электронную температуру этих областей невозможно. Поэтому для определения электронной температуры использованы эмпирические корреляции между электронной температурой и отношениями интенсивностей линий [O III] + [O II] / Н₃ и [O III] / [N II], приведенных в работах [17] и [18] соответственно. Для электронной температуры взяты средневзвешенные определенных по этим двум методам значений. Метод [O III]/[N II] предполагает нормальный химический состав и при отклонении химического состава от нормального он неточен [19]. В областях А и В, как будет показано ниже, отношение N/O ниже нормального, что приводит к заниженным значениям *T*. при использовании метода [O III] / [N II]. Поэтому этим значениям *T*. придано меньше веса. Для электронной температуры центрального и северного сгущений получаются значения 1.10⁴ K±280 и 7.7.10⁸ K±160 соответственно.

Для определения электронной плотности использованы результаты работы [20], где приведены значения отношения интенсивностей линий [S II] λ 6717 и 6731 для разных плотностей с учетом новых данных о силах столкновений для иона S⁺. Для центрального и северного сгущений получаются значения $3.8 \cdot 10^2$ см⁻³ и $2.6 \cdot 10^2$ см⁻³ соответственно. Такие значения плотности характерны для периферийных областей спиральных галактик и для ярких сгущений в иррегулярных галактиках [21, 22], в ядерных же областях спиральных галактик и иррегулярных галактик с УФ-вксцессом электронная плотность порядка 10^3 см⁻³ [23, 24].

5. Химический состав. Относительное содержание различных ионов можно определить исходя из относительных интенсивностей линий этих ионов. Соответствующие формулы для ионов O^1 , O^{++} и N^+ приведены в работе [25]. Для определения же содержания S^+ нами использованы новые атомные данные [26].

4-1345

Н. К. АНДРЕАСЯН

Индекс возбуждения в обеих областях NGC 2814 сравнительно невелик (табл. 2), и можно предположить, что в этих областях нет какого-либо значительного количества кислорода в более высокоионизованном состоянии, чем O⁺⁺. Кроме того, потенциал ионизации H и O почти одинаков, и можно принять, что относительное количество нейтрального водорода существенно не отличается от относительного количества нейтрального кислорода. Относительное содержание кислорода в таком случае можно определить по формуле

$$\frac{N(\mathsf{O})}{N(\mathsf{H})} = \frac{N(\mathsf{O}^+)}{N(\mathsf{H}^+)} + \frac{N(\mathsf{O}^{++})}{N(\mathsf{H}^+)}$$

Азот наблюдается только в однократно ионизованном состоянии, но так как потенциалы ионизации O°, O⁺, O⁺⁺ и N², N⁺⁺ примерно одинаковы, можно принять, что

$$\frac{N(N)}{N(H)} = \frac{N(N^{+})}{N(H^{+})} \cdot \frac{N(O)}{N(O^{+})}$$

Наблюдаемая нами спектральная область не охватывает линии [S III] λ 9069 и 9032, и определить относительное количество ионов S⁺⁺ в данном случае невозможно. При таких обстоятельствах содержание серы можно определить по эмпирическому соотношению, приведенному в работе [27],

$$2.5 \frac{N(S^+)}{N(S)} = \left[\frac{N(O^+)}{N(O)}\right]^2.$$

В табл. З приведены значения относительного содержания ионов О⁺, О⁺⁺, N⁺, S⁺, логарифмы количества атомов О, N, S при lg H = 12 и величины $[X/H] = lg(X/H) - lg(X/H)_{Opnon}$ для сравнения химического состава рассматриваемых областей NGC 2814 с химическим составом туманности Ориона. Данные о химическом составе туманности Ориона взяты из работы [28]. Следует отметить, что при определении химического состава температурные флуктуации в излучающих областях не учитывались.

Как видно из табл. 3, в центральной области. NGC 2814 имеется небольшой, но ощутимый дефицит тяжелых элементов по сравнению с туманностью Ориона. Небольшой дефицит в содержании азота и серы наблюдается также в северном сгущении, но вообще химический состав северного сгущения не сильно отличается от химического состава галактических Н II областей, приведенного в работе [29]. Химический состав обеих областей NGC 2814 в общем типичен для изолированных внегалактических Н II областей, для галактик с УФ-эксцессом и иррегулярных галактик с областями активного звездообразования [22, 30, 31].

- 1 T +	the state of the s	Таблица З
Tair	В	A
0 ⁺ /H ⁺	2.62 10-4	2.52.10-4
0++/H+	6.59-10-5	1.08.10-4
N(O)	8.52	8.56
[O/H]	-0.17	0.04
N ⁺ /H ⁺	0.90.10-5.	1.12 10-5
N (N)	7.05	7.20
[<i>N/</i> H]	-0.52	-0.37
S+/H+	0.15.10-5	0.27.10-5
N(S).	6.76 .	7.19
[S/H]	-0.43	-0.14
5		1.5 - 3 -

6. Обсуждение результатов. Физические условия в областях А й В галактики NGC 2814 похожи на таковые во внегалактических Н II областях, наблюдающихся в рукавах спиральных галактик. Спектральные характеристики обеих областей можно объяснить в рамках механизма фотоионизации. Эффективная температура ионизующих газ звезд соответствует звездам классов ВО-В1 в области А и О8—О9 в области В. Интенсивный континуум в видимой части спектров и наличие абсорбционных линий в области А, по-видимому, свидетельствуют о присутствии значительного количества звезд более поздних спектральных классов в втой области. Не исключено также участие в образовании непрерывного спектра области А излучения ядра галактики. В случае же области В, вероятно, имеем дело с «чистой» Н II областью.

Наблюдается некоторый дефицит содержания тяжелых элементов в обеих областях, который особенно ощутим в центральной области, а отношение N/O в северной, более удаленной от центра области, меньшечем в центральной. В центральной области причина дефицита тяжелых элементов могла бы быть связана с присутствием в этой области значительного количества поглощающей материи ($A_{\rm H_{\beta}} = 1.^{m}87$), в частицах когорой может быть «спрятана» некоторая часть атомов тяжелых элементов [32, 33].

Бальмеровский декремент в северной области искажен только межзвездным поглощением. По-видимому, количество экранирующей пыли в этой области сравнительно небольшое, а сама область находится близко к внешней границе галактики. Последний вывод не противоречит предположению, сделанному в [4] о том, что северная Н II область, возможно, является внешним компонентом галактики NGC 2814.

Конденсация в центральной области NGC 2814, по-видимому, представляет собой эмиссионную ядерную область низкого возбуждения. Такое свойство центрального сгущения часто наблюдается в спиральных галактиках, причем чаще в спиральных галактиках с перемычкой, чем в нормальных спиралях. Этот факт, согласно [34], свидетельствует о более активном звездообразовании в SB-галактиках. Возможно, как отмечено в [35], NGC 2814 является SBb-галактикой, видимой с ребра. Во всяком случае, результаты настоящей работы не противоречат этому. По-видимому, галактику NGC 2814 можно назвать активной в смысле присутствия в ней очагов звездообразования.

Автор выражает глубокую благодарность академику В. А. Амбарцумяну за полезные замечания, проф. Э. Е. Хачикяну за дискуссию. К. К. Чуваеву, А. Н. Буренкову и А. С. Амирханяну за помощь при наблюдениях.

Бюраканская астрофизическая обсерватория

SPECTROPHOTOMETRIC INVESTIGATION OF THE IRREGULAR GALALY NGC 2814

N. K. ANDREASIAN

The results of the spectrophotometric investigation of the two most luminous condensations in the galaxy NGC 2814 are presented. Spectra were obtained on the 2.6 m telescope of the Crimean Observatory (dispersion 100 A/mm) and the 6 m telescope of the Special Astrophysical Observatory (dispersion 65 A/mm).

Ionisation and exitation conditions in NGC 2814 condensations are like those in normal HII Regions. Electron temperatures and electron densities of ionised gas are estimated: $T_{\bullet} \simeq 10^{4}$ K. $N_{\bullet} \simeq 380$ cm⁻³ in the central condensations and $T_{\bullet} \simeq 7.7 \cdot 10^{3}$ K, $N_{\bullet} \simeq 260$ cm⁻³ in the northern ones. Internal absorption in the central region of the galaxy is 1.^m87 near the H₃ line. We find no evidence of internal absorption in the Northern condensations. Chemical abundance of the Northern condensation are comparable to that of the galactic H II regions while the central region is metal deficient. Conclusion about the presence of star formation centered in NGC 2714 is made.

СПЕКТРОФОТОМЕТРИЯ ИРРЕГУЛЯРНОЙ ГАЛАКТИКИ

ЛИТЕРАТУРА

- 1. E. Holmberg, Ann. Lund Obs., No. 6, 1937.
- 2, O. K. Krienke Jr., P. W. Hodge, A. J., 79, 1242, 1974.
- 3. G. de Vaucouleurs, Ap. J. Suppl. ser., 8, 31, 1963. .
- 4. Н. К. Андреасян, Э. Е. Хачикян, Астрофизика (в печати).
- 5. R. P. Stone, Ap. J., 218, 767, 1977.
- 6. G. de Vaucouleurs, Appl. Optics, 7, 1513, 1968.
- 7. M. F. Seaton, Rept. Progr. Phys., 23, 324, 1960.
- 8. M. Brocklehurst, M. N. RAS, 153, 471, 1971.
- 9. D. E. Osterbrock, Nuclei of Galaxies, ed. D. J. K. O'Konnel, New York, 1971.
- 10. E. M. Burbidge, G. R. Burbidge, Ap. J., 135, 694, 1962.
- 11. E. M. Burbidge, G. R. Burbidge, Ap. J., 142, 634, 1965.
- 12. D. P. Cox, W. H. Tucker, Ap. J., 107, 1157, 1969.
- 13. S. M. Aldrovandi, D. Peguignot, Astron. Astrophys., 26, 33, 1973.
- 14. J. A. Baldwin, M. M. Phillips, R. Terlevich, P.A.S.P., 93, 5. 1981.
- 15. L. Searl, Ap. J., 168, 327, 1971.
- 16. G. A. Shilds, B. M. Tinsley, Ap. J., 203, 66, 1976.
- 17. B. E. Pagle, M. E. Edmunds, D. E. Blackwell, M. S. Chun, G. Sm th. M. N. RAS, 189, 95, 1979.
- D. Alloin, S. Collin-Souffrin, M. Joly, L. Vigroux, Astron. Astrophys., 78, 200, 1979.
- 19. G. Stasinska, D. Alloin, S. Collin-Souffrin, M. Joly, ESO Prepr. No. 96, 1980.
- 20. И. В. Носов, Астрон. цирк., № 1050, 1975.
- 21. H. E. Smith, Ap. J., 199, 591, 1975.
- 22. J. Lequeux, M. Peimbert, J. F. Rayo, A. Serrano, S. Torres-Peimbert, Astron. Astrophys., 80, 155, 1979.
- 23. D. Alloin, J. Bergeron, D. Pelat, Astron. Astrophys., 26, 33, 1973.
- 24. T. M. Heckman, Astron. Astrophys., 87, 142, 1980.
- 25. M. Peimbert, R. Costero, Bol. Obs. Tonantzintla, 5, 3, 1969.
- 26. A. K. Pradhan, M. N. RAS, 184, 89P, 1978.
- 27. G. Stasinska, Astron. Astrophys., 66, 257, 1978.
- 28. M. Peimbert, S. Torres-Peimbert, M. N. RAS, 179, 217, 1977.
- 29. S. A. Hawley, Ap. J., 224, 417, 1978.
- 30, Y. Tanigachi, Sh. Tamara, Preprint.
- 31. A. M. Boesgaard, S. Edwards, J. Heidmann, Ap. J., 252, 487, 1982.
- 32. D. Alloin, Astron. Astrophys., 9, 45, 1970.
- 33. M. Petmbert, Ap. J., 154, 33, 1968.
- 34. T. M. Heckman, Astron. Astrophys., 89, 365, 1980.
- A. G. Bosma, S. Casini, J. Heidmann, J. M. van de Halsi, H. van Voerden, Astron. Astrop hys., 89, 345, 1980.