академия наук армянской сср АСТРОФИЗИКА

TOM 17

МАЙ, 1981

выпуск 2

УДК 524.33+524.352

ПРОИСХОЖДЕНИЕ НЕПРЕРЫВНОГО ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ ВСПЫШЕК НА КРАСНЫХ КАРЛИКОВЫХ ЗВЕЗДАХ

М. М. КАЦОВА, А. Г. КОСОВИЧЕВ, М. А. ЛИВШИЦ Поступила 3 июля 1980 Принята к печати 29 марта 1981

Рассмотрены газодинамические процессы, возникающие в результате обжига хромосферы красного карлика, при действии источника мощного нагрсва частично ионизованной водородной плазмы в течение 10 с. При этом ионизация и потери на излучение водорода определялись отдельно для слоев, прозрачных и непрозрачных в линии La. В хромосферу вниз распространяется скачок температуры, перед которым формируется ударная волна. Поскольку радиационные потери существенны, сжатие в ударной волне вслико. Образующееся на высоте ≈ 1500 км уплотнение с $n \ge 10^{15}$ см⁻¹, $T \sim 9000$ К и изменяющейся ве времени толщиной от 1 до 10 км является источником оптического континуума, свойства которого хорошо согласуются с наблюдениями. Физическая причина появления белого свечения во вспышках, по-видимому, состоит в том, что уплотнение становится сильно непрозрачным в бальмеровских линиях. Бальмеровские потери уже не компенсируют нагрев и некоторое повышение температуры в уплотнении приводит к появлению непрерывного оптического излучения.

1. Физические процессы, происходящие во время вспышек на звездал типа UV Cet и на Солнце, по-видимому, во многом аналогичны [1]. На Солнце в жесткой фазе мощных солнечных вспышек высоко, на уровне нижней короны выделяется большая энергия, происходит ускорение электронов до энергий ~ 100 кэВ (ускорение протонов и тяжелых ядер — явление более редкое). Эта фаза, выделенная жестким рентгеновским всплеском, длится примерно 100 с, причем все импульсное событие, вероятно, состоит из отдельных «элементарных» всплесков продолжительностью ~ 10 с. В это время поток энергии (до $3 \cdot 10^{11}$ эрг/см²с, согласно рентгеновским данным) в виде квазиизотропных пучков субрелятивистских электронов и потокот тепла по силовым линиям магнитного поля инжектируется в основания магнитных арок. В хромосфере, в местах попадания пучка развиваются вторичные процессы: появление ярких точек в H_{a} , всплески в EUVи микроволновом (радио) диапазонах.

Вопрос об отклике солнечной хромосферы на нагрев большими потоками энергий хорошо изучен [2—4]. Впервые Н. Д. Костюк и С. Б. Пикельнером [2] выяснено, что характер процесса определяется возникающими при этом газодинамическими движениями. Ими показано, что перед медленно распространяющимся вниз скачком температуры возникает ударная волна, сжимающая и нагревающая газ. Возникновение движущегося вниз уплотнения (между фронтом ударной волны и скачком температуры) является характерной особенностью процесса. Для обычных солнечных вспышек это уплотнение оказывается прозрачным ($\Delta \tau_{5000} \leq 10^{-4}$) в непрерывном спектре.

Гипотеза о нетепловой природе вспышек на звездах типа UV Cet высказана впервые в 1954 г. В. А. Амбарцумяном [5]. Им же предполагалось, что излучение вспышки, особенно близ ее максимума, носит нетепловой характер. Г. А. Гурзадян [6] привлекал для объяснения оптического излучения вспышек обратный комптон-эффект.

Идея об «обжиге» хромосферы звезды как возможной причине вспышек была высказана В. П. Грининым и В. В. Соболевым [7] и ими дан детальный расчет характеристик излучения области, предположительно располагавшейся между фотосферой и хромосферой. Рентгеновские наблюдения звездных вспышек и данные о внешних атмосферах красных карликов позволяют нам рассмотреть процесс на вспыхивающих звездах, аналогичный солнечному. При этом выявляется источник непрерывного оптического излучения, уточняется локализация, и его характеристики связываются с данными о рентгеновском излучении и с развитием процесса в целом.

2. К настоящему времени имеются рентгеновские наблюдения ряда вспышек на 5 звездах типа UV Cet. Светимость в мягкой рентгеновской области заключена в пределах 10³⁰—10³¹ эрг/с (~ 10³² эрг за все время вспышки). Существенны наблюдения спектра самой мощной вспышки на звезде AT Mic (dM4.5e) с совокупностью эмиссионных линий Fe XXV около 6.6 кэВ [8]. Эти данные можно интерпретировать следующим образом: весьма жесткий пучок ускоренных электронов гибнет в плотной плазме, при этом его энергия эффективно преобразуется в мягкое рентгеновское излучение. Появление линий таких высокоионизованных ионов, как Fe XXV свидетельствует в такой модели о достаточно жестком пучке. Энергию нагревающего хромосферу пучка, например, для большой вспышки на звезде YZ CMi (dM4.5e) можно оценить так: в диапазоне 1—7 кэВ светимость близ максимума всплеска составляла ~ 3.6 · 10³⁰ эрг/с [9]. Принимая, что в эту светимость «перерабатывается» заметная доля энергии ускоренных электронов и считая площадь вспышки, согласно оптическим наблюдениям $S = 3.10^{18}$ см², получаем величину потока энергии $F_0 =$ $= 10^{12}$ эрг/см²с, всего в раза превышающую максимальное солнечное значение. Используя в дальнейшем дифференциальный спектр ускоренных электронов в виде $v(E) N(E) - E^{-1}$ см⁻² с⁻¹ кэВ⁻¹ (N(E), см⁻³ кэВ⁻¹ – концентрация ускоренных электронов, v(E), см/с их скорость), принимаем $\gamma = 3$, что соответствует обычному жесткому всплеску на Солнце.

Итак, рассмотрим хромосферу звезды, на которую сверху в течение 10 с падает пучок ускоренных электронов со степенным спектром. При мягком спектре этот пучок будет гибнуть уже в верхней хромосфере: при жестком спектре эффекты в более глубоких слоях оказываются сильно выраженными. В короне и в верхней хромосфере над областями попадания пучка возникает мягкое рентгеновское и крайнее ультрафиолетовое излучение, также оказывающие влияние на нагрев хромосферных слоев.

Как и для Солнца, соответствующая система уравнений одномерной гравитационной газовой динамики в лагранжевых координатах имеет вид:

$$\frac{\partial z}{\partial t} = v,$$

$$\frac{\partial}{\partial t} \left(\frac{1}{n}\right) = -\frac{\partial v}{\partial z},$$

$$\frac{\partial v}{\partial t} = \frac{1}{m_u} \frac{\partial p}{\partial z} - g,$$
(1)
$$\frac{\partial z}{\partial t} = \frac{p}{m_u} \frac{\partial v}{\partial z} + \frac{1}{m_u} \frac{\partial W}{\partial z} + P_e - L + Q,$$

$$W = xn \frac{\partial T}{\partial z},$$

где z—зйлерова координата—высота над фотосферой, уровнем с оптической толщей в непрерывном спектре вблизи 5000 А. равной 1; t—время, v скорость, p—давление, n—плотность нейтральных и ионизованных водородных атомов, ε — внутренняя энергия, g—гравитационное ускорение, ε — лагранжева переменная d = -ndz, W—тепловой поток, T—температура, x—коэффициент теплопроводности, P_{ε} — мощность нагрева хромосферы ускоренными электронами, l—потери энергии на излучение, Q мощность источников, поддерживающих начальное распределение температуры (волновой нагрев). Она принимается равной потерям на излучение, мовычисляемым при значениях параметров соответствующей начальной мо-

дели. Система выписана для однотемпературного приближения с элехтронной температурой T_e , совпадающей с ионной T_i . Иначе говоря, предполагается, что в поверхностном слое нагреваются одновременно электроны и ионы. Вообще для решения поставленной задачи более корректно использовать двухтемпературное приближение [10]: нагрев электронов с последующей передачей энергии ионам. Здесь существенно, что эти два приближения отличаются тем, что при одном и том же нагревающем потоке величина T_e в однотемпературном приближении несколько (максимально до двух раз) меньше соответствующего значения в двухтемпературной модели — нагрев двух, а не только электронной компоненты плазмы. Тогда в нашем случае в хромосферу поступает несколько меньший поток тепла. Наши выводы остаются справедливыми и в двухтемпературном приближении, а нагревающий поток может быть принят несколько меньшим.

Плазма считается идеальным газом, состоящим только из водорода. Уравнение состояния с учетом частичной ионизации имеет вид

$$\varepsilon = \frac{3}{2} \frac{k}{m_{\mu}} (1+x) T + \frac{\gamma_{\mu}}{m_{\mu}} x,$$

$$p = k (1+x) n T,$$
(2)

где $x = n_e/n$ — степень ионизации, n_e — электронная плотность, k — постоянная Больцмана, $\chi_{\mu} = 13.6$ эВ — потенциал ионизации водорода. Заметим, что при использовании (2) для больших с вместо величины x бралась аналогичная величина x^* (см. ниже).

Система (1) имеет следующие граничные условия: нижняя граница рассматриваемой области с = стах = 5.1023 см-2 выбрана достаточно глубоко в фотосфере, где принято, что движения отсутствуют, v (ξ_{max} , t) = 0. Определенных данных о коронах вспыхивающих звезд пока нет, поэтому верхнюю границу хромосферы $\xi = \xi_{min}$ будем считать свободно плавающей поверхностью, как это сделано в [3]. Влияние короны учитывается заданием постоянного внешнего давления $p(t_{\min}, t) = p_0$. Величина давления в основании короны определена из предварительного анализа наблюдений коротковолновых линий, проведенных на IUE [11] для ряда холодных звезд. Так, для звезды «Eri (K2 V) эта величина в три раза превышает солнечное значение. В дальнейших расчетах принята величина давления в основании короны красного карлика $p_0 = 0.3$ дин/см². Это фиксирует внешнюю границу на уровне $z_{\min} = p_0/(m_g) = 3 \cdot 10^{18} \text{ см}^{-2}$. Граничное условие по температуре соответствует отсутствию теплового потока на нижней и верхней границе: $W(\xi_{max}, t) = W(\xi_{min}, t) = 0.$

Начальная модель атмосферы считается гидростатической, чтобы избежать появления движений в начальный момент за счет градиентов давления: $(1/m_{\rm H})(\partial p/\partial z) = g$. Расчеты, однако, показали, что это условие не является обязательным. Для нижней хромосферы звезды спектрального класса dM1-2 с $T_{*\phi\phi} = 3250$ К и $\lg g = 4.75$ принято z = 1200 км, $n = 2 \cdot 10^{16}$ см⁻³ и T = 3000 К [12]. Градиент температуры в хромосфере $\partial T/\partial \lg z$ принять ~ 1500 К, согласно данным о хромосферах красных карликов [13]. Он определяет распределение температуры в хромосфере, и при переходе от нижней границы ($z_{\rm max} \sim 10^{22}$ см⁻²) к верхней ($z_{\rm min} \sim 10^{19}$ см⁻²) получаем на верхней границе $T \sim 7500$ К. Выбранный нами ход подтвержден недавно [14]. Протяженность хромосферы при этом ≈ 600 км. Для решения системы с заданными начальными и граничными условиями требуется определить функции нагрева и охлаждения.

Мощность, выделяемая ускоренными электронами из-за кулоновских потерь в частично ионизованной плазме, может быть записана в виде [2]:

$$P_{e}/n = x P_{1}(\xi) + (1 - x) \beta P_{2}(\xi), \qquad (3)$$

где $P_1(z)$ и $P_2(z) = 0.3 P_1(z)$ [15] — ионизационные потери в понизованной и нейтральной средах соответственно, $n = n_{\rm HI} + n_{\rm HII} - общая$ плотность. Коэффициент $0 \leq \beta \leq 1$ характеризует долю энергии ионизационных потерь, переходящую непосредственно в тепло. В солнечных расчетах малым вторым членом обычно пренебрегают потому, что при возбуждении ускоренным электроном нейтрального атома это состояние возбуждения атома снимается при излучении фотона, и нагрева при этом не происходит. В рассматриваемом нами случае больших плотностей нейтральных частиц в звездной хромосфере вероятность того, что после возбуждения не излучится квант, а произойдет удар II рода, возрастает. Величина этой вероятности равна $n_2C_{21}/(A_{21}+n_2C_{21})$ (n_2 -- населенность 2-го уровня, С21 - скорость девозбуждения, А21 - вероятность радиационного перехода в линии L.) и, как следует из приводимых ниже результатов, изменяется от < 10⁻⁶ до 10⁻². При больших оптических толщах в линии L. это означает эффективное превращение энергии в тепло вследствие неупругих соударений. Кроме того, при звездных вспышках в короне образуется область с мерой эмиссии $ME \ge 10^{53}$ см⁻³ и $T_e \ge 3 \ 10^7$ K [8], которая сильно излучает в мягкой рентгеновской области. Поглощение этого излучения приводит к заметному нагреву слоев с :~ 10²¹ см-2. Оба эти фактора учтены тем, что коэффициент 3 принят равным 1. Конкретно в расчете принимались: величина потока ускоренных электронов $F = 10^{12}$ эрг/см²с и показатель спектра $\gamma = 3$. Функция мощности нагрева ускоренными электронами P, (:) заимствована из расчетов Сыроватского и Шмелевой [16]:

$$P_{1}(\zeta) = \frac{1}{2} a F_{0} E_{10} (2a\zeta)^{-3/2} \varphi(\zeta) \text{ spr/c},$$

где

$$\varphi\left(\xi\right) = \begin{cases} \frac{\pi}{2} - \operatorname{arctg} \sqrt{\frac{\xi_0}{\xi} - 1} - \frac{\xi}{\xi_0} \sqrt{\frac{\xi_0}{\xi} - 1}, & \xi < \xi_0 \\ \frac{\pi}{2} & , & \xi > \xi_0 \end{cases}$$

Здесь $\xi_0 = E_{10}^2/2a$, $E_{10} = 10$ кэ $B = 1.6 \cdot 10^{-8}$ эрг

константа $a = 3.32 \cdot 10^{-37} \left(\ln E_{10}/m_e c^2 - \frac{1}{2} \ln n + 38.7 \right)$ эрг²см².

Видно, что нагрев примерно постоянен при $\xi > \xi_0$ и уменьшается как $\xi^{-3/2}$ выше (при $\xi < \xi_0$).

Рассмотрим далее функцию охлаждения. Газодинамические расчеты при различных предположениях о радиационных потерях энергии позволили выяснить ту необходимую степень точности определения потерь, превышение которой уже существенно не влияет на характер получаемого решения. Один из полученных при этом результатов очевиден: радиационные потери необходимо вычислять одновременно со степенью ионизации водородной плазмы. Это и было проделано для каждого момента времени. Во-вторых, оказалось возможным не проводить совместного решения уравнений газодинамики и переноса излучения для многоуровеннего атома, а ограничиться приближенным методом вычисления потерь энергии. Он состоит в следующем: разобьем столб газа на две части, лежащие выше и ниже уровня с оптической толщой в центре линии L., равной критическому значению тор. В верхнем прозрачном слое степень ионизации определяется как для солнечной короны

$$n_1 n_e q_1 = n_e n_{\mu} \alpha$$
 или $\frac{1-x}{x} = \frac{\alpha}{q_1}$,

где $x = n_e/n$, q_1 — скорость ионизации электронным ударом атома водорода с основного уровня в см³/с, n_e и n_p — плотности электронов и протонов.

Потери на излучение в линии L₂ в случае свободного выхода кванта из среды равны

$$L_{\rm L} = 4 - \varepsilon_{\rm L} = n_2 A_{21} h v_{\rm L} = n_1 n_e C_{12} h v_{\rm L} , \qquad (4)$$

где є эргісм³ с стер — объемный коэффициент излучения, А₂₁ — ве-

роятность перехода, L_{12} — частота перехода в линии L_2 , C_{12} — скорость возбуждения электронным ударом в см³/с.

В нижнем слое степень ионизации x^* и радиационные потери, связанные, в основном, с излучением в линии H_{α} , вычислялись с учетом того, что населенность 2-го уровня водородного атома определяется процессом многократного рассеяния L_x -квантов. При этом для нас существен лишь основной результат решения уравнения переноса для двухуровенного атома: в достаточно глубоких слоях распределение населенностей между 2-м и 1-м уровнями оказывается больцмановским с температурой возбуждения, равной кинетической [17]. Считая, что это выполняется в слоях с $L > \pi_p$ и обозначая там степень ионизации $x^* = n_e/n$, для достаточно плотной плазмы имеем:

где n_2 — число водородных атомов на 2-м уровне, g_1, g_2 — статистические веса уровней, χ_{12} — потенциал возбуждения 2-го уровня, q_2 — скорость ионизации электронным ударом со 2-го уровня. Рекомбинация на 1-й уровень, скорость которой σ_1 , здесь исключается, ибо при заметной оптической толще в лаймановском континууме возникающий при рекомбинации фотон с h < 912 A снова ионизует нейтральный атом (как при рассмотрении зон Стремгрена). Система (5) при известных n и T определяет $x^* = n_e/n$ и n_2 .

Потери на излучение в линии На вычисляются при этом как

$$L_{\rm B} = 4\pi\varepsilon_{\rm B} = n_{\rm 3}A_{\rm 32}h\nu_{\rm H_a} = n_{\rm 2}n_{\rm e}C_{\rm 23}h\nu_{\rm H_a}, \tag{6}$$

где a_3 —населенность 3-го уровня, A_{32} —вероятность перехода с 3-го на 2-й уровень в линии H_{α} , C_{23} —скорость возбуждения электронным ударом со 2-го на 3-й уровень.

Степень ионизации и радиационные потери водородной плазмы приведены на рис. 1 и 2. При расчетах к потерям энергии водородной плазмы добавлены потери на излучение отрицательных ионов водорода, металлов, высокоионизованных ионов (при $T > 2 \cdot 10^4$ K) и при свободно-свободных и свободно-связанных переходах [4].

В проведенных газодинамических расчетах полученные в (4) потери в линии L₂ для случая свободного выхода L₃ -квантов из среды при > 1 умножались на вероятность P выхода L₃ -кванта из среды. Величина P зависит от вероятности выживания кванта при одном рассеянии $= A_{21}/(A_{21} + n_2C_{21})$ и от среднего числа рассеяний \overline{N} [14]: $P = 1 - (1 - \lambda)\overline{N}$. Используя приближенное решение уравнения переноса [18],

имеем для полубесконечного слоя $P = 1 - [(1 - \lambda)/(1 - \lambda + \lambda L(\tau)]^{1/2}$ Функция L(т) протабулирована в [19] и для больших тимеет вид L(τ) = 1/2 т $\sqrt{\pi \ln \tau}$.

Рис. 1. Степень ионизации водорода х и х^{*} в прозрачных и непрозрачных в линия L₂ слоях соответственно.

Рис. 2. Радиационные потери при 4.10³ < T < 4.10⁴ К в случае свободного выхода соответствующих квантов на среды (формулы (4) и (5)), H^- — по [29], металлы по [30]. Сплошные линик— L/nn_e , пунктир— L/n_1n_e . Размерность [L] = эрг см⁻³с⁻¹.

Учет лаймановского излучения наиболее существен в начале газодинамического процесса. Для вычисления P принято, что при $n_e = 3 \cdot 10^{11}$ см⁻³ и $C_{21} = 5 \cdot 10^{-9}$ см³/с величина $1 - 4 = 3 \cdot 10^{-6}$. При этом из расчета для изотермической атмосферы [17] следует, что с достаточной степенью точности больцмановское распределение между 1-м и 2-м уровнями устанавливается при $\tau_{вр} = 10^6$. Роль верхних прозрачных слоев со временем быстро падает, и в более поздние моменты выбор численных значений $\tau_{\kappa p}$ неважен. Поэтому $1 - \lambda$ и τ_{kp} считались постоянными.

В нижнем слое потери вычислялись непосредственно по (6), однако, когда $\tau_{\rm H}$ приближалась к 10³, мы предполагали, что вероятность выхода H₂-фотонов с уровня $\tau_{\rm H} = 10^3$ равна 0.5. Это фактически означает завышение потерь из самых глубоких слоев.

Заметим, что в систему (1), записанную в лагранжевых координатах, функции нагрева и охлаждения подставлялись в единицах эрг/г·с, то есть учитывался множитель $1/m_{\rm H}$. Эта система с описанными граничными и начальными условиями и вычисленными функциями потерь и нагрева решалась численно с использованисм полностью консервативной разностной схемы [20, 21]. Данный метод обеспечивает выполнение на разностной сетке основных законов сохранения в газодинамике при наличии гравитационного поля. Пространственная сетка «сгущалась» в области резкогс изменения рассчитываемых параметров. Временной шаг счета $10^{-3} - 10^{-4}$ с, этого достаточно для учета тепловой неустойчивости. При расчете ударных волн вводилась искусственная вязкость. Расчет одного варианта на ЭВМ БЭСМ-6 занимает около 5 часов.

Полученное численное решение (рис. 3) показывает, что при обжиге хромосферы красного карлика ускоренными электронами происходят аналогичные солнечным физические процессы. Хромосфера звезды очень быстро прогревается до глубины $z_0 = E_{10}^2/2a \sim 2 \cdot 10^{19}$ см⁻¹². Движения еще практически отсутствуют, и плотность сильно нагретых слоев существенно измениться не успевает. От области образовавщегося скачка давления вверх и вниз распространяются два возмущения. Распространение возмущения вниз в последующие моменты времени описывается решением типа температурной волны II рода [22]. Она характеризуется движением скачка температуры (тепловой волны) с дозвуковой скоростью, перед фронтом которого образуется ударная волна. В течение некоторого времени тепловая волна «усиливает» ударную, но если процесс продолжается десятки секунд, то сильный отток газа вверх за фронтом тепловой волны останавливает процесс. Заметим, что сильное сжатие за фронтом движущейся вниз ударной волны связано с радиационными потерями, и наши численные релишь подтверждают известную формулу Каплана [23]: зультаты $p_2/p_1 = m_{\mu\nu}v^2/kT \sim 100 (v - скорость за фронтом волны).$

Между скачком температуры и фронтом ударной волны возникает уплотнение толщиной ~ 1 км, и его толщина к концу нагрева начинает превосхедить 10 км (в солнечном случае оно на порядок толще). Плотность в возникшей конденсации несколько изменяется, все время превышая значение $n = 10^{15}$ см⁻³ (см. рис. 3). Температура в конденсации под-

держивается $\approx 8500-9000$ К и соответственно степень ионизации составляет ≈ 0.07 . Скорость движения газа за фронтом распространяющейся вниз ударной волны ~ 100 км/с, наружу корональная плазма с $T \sim \sim 3 \cdot 10^7$ К течет со скоростью ~ 1000 км/с.

Рис. 3. Распределение плотности, температуры и скорости в различные моменты времени. Положительные значения скорости соответствуют удалению плазмы от поверхности звезды. Фотосфера расположена слева: $\Delta \xi = 10^{21}$ см⁻² при $n = 10^{15}$ см⁻³ соответствует $\Delta z = 10^4$ см. Пунктир — начальная модель.

При нагреве ускоренными электронами конденсация с такими физическими параметрами возникает лишь при достаточной жесткости первичного пучка ($\gamma = 3$). Если пучок более мягкий ($\gamma > 3$), в соответствии со всеми предыдущими солнечными рассмотрениями, эффекты на низких высотах по сравнению с процессами в короне ослабевают. Однако при больших нагревающих потоках возрастает роль поглощения мягкого рентгеновского излучения, и влияние уменьшения жесткости пучка проявляется не слишком резко. Заметим, что из солнечных расчетов следует, что максимальная плотность в конденсации примерно пропорциональна величине F_9 . При переходе от жесткого к мягкому спектру с $\tilde{\gamma} = 6$ максимальные скорости движения газа вниз уменьшаются до ~ 20 км/с. Основным фактором для образования конденсации является существование в течение нескольких секунд достаточного мощного нагрева.

3. В работе В. П. Гринина и В. В. Соболева [7] было высказано предположение о том, что оптическая вспышка на звездах типа UV Cet локализована между фотосферой и хромосферой в области с плотностью атомов водорода $10^{15} - 10^{17}$ см⁻³. Подробно проанализировав излучение этой плотной плазмы с T от 5000 K до 2 · 10⁴ K, авторы пришли к выводу о том, что свойства излучения такого источника хорошо согласуются с наблюдениями.

В рассмотренном нами газодинамическом процессе возникает источник оптического излучения с $n \gtrsim 10^{15}$ см⁻³, $T \approx 9000$ К и толщиной $\Delta z \sim \sim 10$ км, характеристики которого попадают в исследованный в [7] диапазон физических параметров. Этот источник формируется в результате динамического отклика звездной хромосферы на импульсный нагрев и располагается на высоте ≈ 1500 км над уровнем фотосферы ($\tau_{5000} \sim 1$).

Светимость вспышки при $\lambda \sim 4500$ А по отношению к светимости звезды можно выразить в виде

$$L_{\rm acn}/L_{*} = \frac{S}{\pi R_{*}^{2}} \frac{B(T_{\rm Bcn})}{B(T_{*\phi\phi})} (1 - \exp \Delta \tau_{4500}), \tag{7}$$

где B(T) — функция Планка. В различные моменты времени оптическая толща в непрерывном спектре $d_{74500} = ap_e d_5$. Здесь $a(T, p_e)$ взято по таблицам [24] и при рассматриваемых значениях параметров определяется поглощением водорода. Проинтегрированная по всему уплотнению величина $\Delta \tau_{4500}$ для различных моментов времени приведена на рис. 4. При площади вспышки, как и прежде, $S = 3 \cdot 10^{18}$ см², радиусе звезды $R_{\bullet} = 0.3 R_{\odot}$, средней температуре конденсации $T_{\bullet cr} =$ - 8900 K и эффективной температуре звезды $T_{\bullet \phi \phi} = 3250$ K и, используя $\Delta \tau_{4500}$ для моментов времени от 3 до 8 с, по (7) получаем $L_{\bullet cn}/L_{\ast} \simeq 0.7$. Разумеется, если подобная вспышка происходит на звезде с меньшим радиусом $\sim 0.1 R_{\odot}$, то $L_{\bullet cn}/L_{\ast} \simeq 6.3$, что в фильтре В соответствует большой вспышке. Таким образом, рассматриваемый здесь механизм приводит к появлению заметного непрерывного оптического излучения. Свойства излучения, возникающего при элементарном событии. можно определить, используя теоретические диаграммы Гринина и Соболева. При $n = 2 \cdot 10^{15}$ см⁻³, $T \sim 9000$ К и толщине $\Delta z = 10$ км получаем U - B = -1 и B - V = 0.5, что согласуется с наблюдаемым бело-голубым свечением вспышки. При тех же параметрах для прозрачного водородного газа получаем величину бальмеровского скачка ~ 0.8 . Вообще говоря, такая величина является верхним пределом наблюдаемых значений. Реально вспышка состоит из набора таких элементарных всплесков. При этом цвет сильно не изменится, а бальмеровский скачок за счет появляющейся непрозрачности газа уменьшится по сравнению со случаем прозрачного газа.

Рис. 4. Оптическая толша уплотнения при 1 4500 А в различные моменты времени.

Если описываемые элементарные события, вытекающие из интерпретации временной структуры жестких рентгеновских всплесков, как и на Солнце, следуют друг за другом без заметных интервалов, то кривая блеска вспышки должна повторять характер изменения во времени нагревающего потока. Этот временной профиль аналогичен рентгеновскому всплеску при энергиях фотонов 5—10 кэВ (т. к. учитывается нагрев электронами и поглощение мягкого рентгеновского излучения). В этот же промежуток времени, который ниже для краткости будем называть временем нагрева (на Солнце — это жесткая фаза вспышки), следует ожидать проявления и всей совокупности нетепловых процессов.

Можно указать две возможности, когда при одновременном начале явления излучение в континууме будет продолжаться заметно дольше времени нагрева: а) Исчезновение конденсации происходит весьма медленно, особенно в рассчитанном нами варианте с двумя нагревающими импульсами (по 10 секунд с перерывом также 10 секунд). Мягкое рентгеновское излучение из короны может поддерживать температуру внутри конденса-

НЕПРЕРЫВНОЕ ОПТИЧЕСКОЕ ИЗЛУЧЕНИЕ ВСПЫШЕК

ции при ее газодинамической релаксации. 6) В некоторых особых случаях из-за тепловой неустойчивости в ходе процесса в нижней короне могут возникать структуры с $T \sim 9000$ К и плотностями, характерными для хромосферы (подробнее см. [25, 26]). Эти структуры уносятся в корону восходящим потоком и за десятки секунд прогреваются. Если эти образования излучают в оптическом диапазоне, это может продлить вспышку.

4. При обжиге хромосферы звезды достаточно мощным потоком энергии, заключенном в анизотропном или изотропном потоке электронов, тепловом потоке или потоке ионизующей радиации, развиваются характерные газодинамические процессы. При обжиге потоком $F_0 = 10^{11} - 10^{12}$ эрг/см² с в течение, по крайней мере, нескольких секунд между скачком температуры и фронтом ударной волны формируется достаточно плотная и горячая конденсация, способная излучать в оптическом континууме.

Причина появления непрерывного оптического излучения обнаруживается при сравнении звездной вспышки с солнечной. Для Солнца рассматриваемое уплотнение является источником излучения в бальмеровских линиях, в ярких точках больших вспышек [4, 27]. Хотя основной нагрев происходит вблизи температурного скачка в самой верхней части конденсации, внутренние ее части несколько прогреваются. Этот нагрев легко компенсируется потерями на излучение в бальмеровских линиях. Их резкая зависимость от температуры (см. рис. 2) приводит к тому, что баланс нагрева и охлаждения реализуется при температурах, не превышающих 8000 К. При этом степень ионизации х* весьма мала, и оптическая толща конденсации 1 5000 ~ 10-4 и, следовательно, непрерывное оптическое излучение оказывается пренебрежимо малым. Однако уже в этой первой физической ситуации (когда нагрев уравновешивается бальмеровскими потерями) эптическая толща в центре линии Н. достигает значений ~ 100. При некотором увеличении нагрева нейтрального и ионизованного компонентов плазмы величина _н сразу начинает превышать критическое значение $(\tau_{\rm H} = \tau_{\rm KP} \sim 1000)$, при котором выход H_{2} -квантов из среды оказывается затруднен. Бальмеровские потери уже не компенсируют нагрев, что является физической причиной повышения температуры в конденсации. В наших же расчетах это увеличение температуры было следствием некоторого завышения нагрева без учета уменьшения вероятности выхода На-квантов из среды. Рост температуры на 500—1000 К внутри конденсации и приводит к появлению заметного непрерывного оптического излучения при вспышке.

Как только оптическая толща в белом свете начинает превышать эначения 3.10⁻², основным источником охлаждения становится излучение оптического континуума. В этой второй физической ситуации энергетический баланс приводит к температурам ~ 10⁴ K. Этот источник охлажде-

ния чрезвычайно эффективен, и значительная часть нагревающего потока перерабатывается в оптический континуум. Хотя физические условия в звездной хромосфере не слишком отличаются от солнечных, увеличение плотности в начальной модели и уменьшение высоты однородной атмосферы при значительном нагреве оказывается достаточным для перехода от первой ко второй физической ситуации. С этим связан тот факт, что белая вспышка на Солнце — чрезвычайно редкое явление, тогда как появление оптического континуума является характерной отличительной чертой вспышек на звездах типа UV Cet.

Если развиваемые представления верны, то должно иметь место существенное различие в отношениях полных светимостей в рентгеновском и оптическом диапазонах для солнечных и звездных вспышек. Легко определить, что для слабых солнечных вспышек отношение мощности излучения в мягком рентгене к излучению в линии H_2 : $L_x/L_{ont} > 1000$. Для жесткой фазы солнечных вспышек это отношение сильно уменьшается и при появлении белого свечения достигает нескольких единиц. Для звездных вспышек величина L_x/L_{ont} должна быть еще меньшей (вплоть до 10^{-2}) ввиду указанной высокой эффективности переработки энергии нагрева в непрерывное оптическое излучение. Это теоретическое значение, согласующееся с имеющимся одновременным рентгеновскими и оптическими наблюдениями вспышки на звезде UV Cet противоречит, однако, косвенным выводам, содержащимся в [8]. Дальнейшие одновременные оптические и рентгеновские наблюдения смогут показать справедливость развиваемых представлений.

В оптическом диапазоне во время регистрации заметного непрерывного излучения в спектре следует ожидать следующие особенности. Прежде всего, в начале каждого элементарного события возникают области высоких температур, существенно превышающих 10⁴ К. Только в этот момент возможно появление линий Hel—He II. Линия H₂, как уже обсуждалось, возникает в конденсации, где газ движется в основной части вниз, но близ ее верхней границы происходит истечение газа с высокими скоростями. Оптическая толщина конденсации в центре линии H₂, достигает 10³. Отсюда следует, что ширина профиля линии H₂ во время регистрации белого свечения должна достигать больших значений, ~ 10 А, и должна присутствовать красная асимметрия профиля. С исчезновением непрерывного оптического излучения линия H₂ должна быстро сужаться. Средняя температура источника оптического излучения, по-видимому, не может сильно отличаться от 10⁴ К. Можно считать, что все это согласуется с имеющимися оптическими наблюдениями [1, 28].

В этой статье мы фактически не касались того, что рассматриваемый процесс приводит к постепенному формированию в короне ударной волны со скоростями, превышающими 1000 км/с. Поэтому должны наблюдаться явления, аналогичные солнечным радиовсплескам.

Авторы благодарны Р. Е. Гершбергу и В. В. Иванову за плодотворные дискуссии.

Государственный астрономический институт им. П. К. Штернберга

Крымская астрофизическая обсерватория

Институт земного магнитизма. ноносферы и распространения радиоволи АН СССР

THE ORIGIN OF THE OPTICAL CONTINUUM OF FLARES ON RED DWARFS

M. M. KATSOVA, A. G. KOSOVICHEV, M. A. LIVSHITS

The dynamical response of the red dwarf chromosphere intensively heated during 10 seconds has been studied. The ionization and radiative losses of hydrogen have been determined for the optically thin and thick L_x —line layers separately. The temperature jump propagates downwards and the shock is formed in front of this thermal wave. The radiative losses being substantial, the density jump in this shock wave is great. The condensation with $n \gtrsim 10^{15}$ cm⁻³, $T \sim 9000$ K is formed at the height of about 1500 km above the photosphere, its depth varies in time from 1 to 10 km and it may radiate in the optical continuum. The characteristics of this radiation are consistent with observations. In the case of more intensive heating the optical depth in the Balmer lines becomes very large. The Balmer line losses cannot balance the heating and the temperature in this condensation increase. This is the main reason for the optical continuum origin.

ЛИТЕРАТУРА

- 1. Р. Е. Гершберг, Вспыхивающие звезды малых масс, Наука, М., 1978.
- 2. Н. Д. Костюк, С. Б. Пикельнер, Астрон. ж., 51, 1002, 1974.
- 3. Б. И. Сомов, А. Р. Спектор. С. И. Сыроватский. Труды физ. ин-та им. П. Н. Лебедева АН СССР, 110, 73, 1979.
- 4. А. Г. Косовичев, М. А. Лившиц, Ю. П. Попов. Препринт ин-та прикл. матем. им. М. В. Келдыша АН СССР, № 68, 1980.
- 5. В. А. Амбаруумян, Научные труды, т. II. Ереван, 1960.
- 6. Г. А. Гурзадян, Вспыхивающие звезды, Наука, М., 1973.
- 7. В. П. Гринин, В. В. Соболев, Астрофизика, 13, 587, 1977.

- S. M. Kahn, J. L. Linsky, K. O. Mason, B. M. Haisch, G. S. Bowyer, N. E. White, S. H. Pravdo, Ap. J., 234, L 107, 1979.
- 9. J. Heise, A. C. Brinkman J. Schrijver R. Mewe, E. Gronenschild, A. den Boggende, Ap. J., 202, L73, 1975.
- 10. В. Д. Дьяченко, В. С. Имшенник, Журн. вычислит. матем. и мат.-физ., 3, 915, 1963.
- 11. J. L. Linsky et al., Nature, 275, 389, 1978.
- 12. J. L. Mould, Astron. Astrophys., 49, 443, 1976.
- 13. W. L. Kelch, J. L. Linsky, S. P. Worden, Ap. J., 229, 700, 1979.
- 14. L. E.Cram, D. J. Mullan, Ap. J., 234, 579, 1979.
- 15. J. C. Brown, Solar Phys., 28, 151, 1973.
- 16. С. И. Сыроватский, О. П. Шмелева, Астрон. ж., 49, 334, 1972.
- V. V. Ivanov, Transfer of Radiation in Spectral Lines, Washington, U.S. Cov. Print. Off., 1973.
- 18. В. В. Иванов, Астрон. ж., 49, 115, 1972.
- 19. В. В. Иванов, З. Т. Щербаков, Астрофизика, 1, 31, 1965.
- 20. А. А. Самарский, Ю. П. Попов, Разностные схемы газовой динамики. Наука, М., 1975.
- 21. А. Г. Косовичев, Ю. П. Папов, Журн. вычислит. матем. и мат. физ., 19, 1253, 1979.
- 22. П. П. Волоседич, С. П. Курдюмов, Л. Н. Бусурина, В. П. Крус, Журн. вычислит. матем. и мат. физ., 3, 159, 1963.
- 23. С. А. Каплан. Межэвездная газодинамика, Физматгиз, М., 1958.
- 24. G. Bode, Kontinuierliche Absorption von Sternatmospheren, Kiel, 1965.
- 25. А. Г. Косовичев, Препринт ин-та прикл. матем. им. М. В. Келдыша АН СССР. № 167, 1979.
- 26. А. Г. Косовичев, М. А. Лившиц, О. Г. Бадалян, Астрон. цирк., № 1069, 1979.
- 27. Н. Д. Костюк, Астрон. ж., 53, 361, 1976.
- 28. S. W. Mochnacki, H. Zirin, Preprint Big Bear Sol. Obs. 9184, Januar, 1980.
- 29. J. C. Henoux, Y. Nakadawa, Astron. Astrophys., 66, 385, 1978.
- 30. R. G. Giovanelly, Solar Phys., 59, 293, 1978.