академия наук армянской сср АСТРОФИЗИКА

TOM 16

НОЯБРЬ, 1980

ВЫПУСК 4

УДК 523.035.33

ИНФРАКРАСНАЯ ФОТОМЕТРИЯ S ЗВЕЗД

А. А. АКОПЯН, В. В. КИРЬЯН, Ю. К. МЕЛИК-АЛАВЕРДЯН. Г. М. ТОВМАСЯН

Принята к печати 11 июля 1980

Приводятся результаты наблюдений S звезд в диапазоне 0.98 – 2.39 мкм. Обнаружено наличие ИК-избытков на 1.75 мкм у некоторых из звезд и поглощение на 2.39 мкм у всех исследованных звезд.

В последние годы в Бюраканской астрофизической обсерватории ведутся инфракрасные наблюдения холодных звезд. Особое внимание уделяется холодным звездам с аномальным химическим составом. В частности, в программу наблюдений были включены и S звезды, то есть звезды с повышенным содержанием тяжелых элементов, таких, как Zr, La.

Звезды класса S сравнительно мало исследованы в ИК-диапазоне. Можно упомянуть, например, работу [1], в которой выполнено отождествление некоторых S звезд с объектами 2-микронного обзора неба [2]. В работе [3] исследовалась переменность S звезд на 1.04 мкм. О спектральных инфракрасных исследованиях S звезд сообщается в работах [4] и [5]. В этих работах отмечена высокая интенсивность полосы СО (3.0) у звезды % Суд. Кроме того, отмечено отсутствие линии Брекет 7 [4] и наличие сильного поглощения излучения парами H₂O [6] в спектре этой звезды.

Так как многие из S звезд являются переменными, то их цветовые характеристики невозможно определить из фотометрических наблюдательных данных, относящихся к разным фазам блеска. Для определения цвета необходимы наблюдения, выполненные при одной и той же фазе на различных длинах волн. В настоящей работе приводятся результаты таких наблюдений 13 эвезд из каталога Стефенсона [7]. Наблюдения проводились на телескопе ЗТА-2.6 м с помощью охлаждаемого углекислотой приемника PbS. Применялись интерференционные фильтры, основные параметры которых (длина волны ³, соответствующая максимуму пропускания, ширина полосы ^{Δ/} по половине максимального пропускания, пропускание ⁵ в максимуме) приводятся в табл. 1. Список исследованных звезд приводится в табл. 2, где указаны дата наблюдений, тип переменности и период [8], а также спектральный класс [9].

Таблица 1

А мем Да мем	0.98	1.47 0.03	1.54	1.72	1.75 0.03	1.98 0.05	2.02 0.05	2.17 0.05	2.23 0.06	2-39 0.04
≂ °/o	24	42	50	57	34	52	58	62	62	68

ПАРАМЕТРЫ ФИЛЬТРОВ

СПИСОК ИССЛЕДОВАННЫХ ЗВЕЗД

Tas iuga 2

Звезда	Дата наблюдения	Спектр	Тип переменности	Период (сутки)		
S 20= HR 363	13/14 09 1978	M2S				
S 60 HR 1105	14/15 09 1978	S5.3	_	_		
S 84 = 40 ² Ori	13/14 09 1978	M3S	_	_		
S 98 HD 35155	4/5 02 1978	S4.1	_			
S 110 HD 37536	3 4 02 1978	M2S				
S 156 DY Gem	2/3 02 1978	S8.5	SRa	_		
S 452=S UMa	8/9 05 1979	S5.9	М	226		
S 483=R Gam	8/9 05 1979	S2.9	M	27 0		
S 616= R Cyg	10/11 07 1979	\$3.9	M	426		
S 625 7. Cyg	10/11 07 1979	S7.1	M	407		
S 714 SX Peg	4/5 11 1978	S4.9	М	306		
S 718 HR 8714	2/3 02 1978	S5.1		-		
S 723 V 57 Peg	2/3 02 1978	M4S	_			

Для исследованных звезд были определены показатели цвета $[l] - [1.54] = -2.5 \lg F_{\lambda}/F_{1.54}$, где F_{λ} —спектральная плотность потока на волне λ . Для калибровки фотометра и учета атмосферной экстинкции наблюдались звезды-стандарты, которые выбирались вблизи исследуемых звезд. Полученные таким образом цвета исследованных звезд приводятся в табл. 3 и на рис. 1. В конце табл. 3 приведены среднеквадратичные ошибки, оцененные по всем наблюдавшимся звездам.

670

ИНФРАКРАСНАЯ ФОТОМЕТРИЯ S ЗВЕЗД

Таблина З

ОЦЕНЕННЫЕ ПО ВСЕМ НАБЛЮДАВШИМСЯ ЗВЕЗДАМ										
А мкм Звезда	0.98	1.47	1.72	1.75	1.98	2.02	2.17	2.23	2.39	
S 20 S 60 S 84 S 98 S 110 S 156 S 452 S 483 S 616 S 625 S 714 S 718	$\begin{array}{c} 0.38 \\ -0.36 \\ -0.38 \\ -0.34 \\ -0.44 \\ 0.00 \\ -0.25 \\ -0.23 \\ -0.06 \\ -0.09 \\ 0.06 \\ -0.30 \end{array}$	$\begin{array}{r} -0.16\\ -0.10\\ -0.19\\ -0.21\\ -0.25\\ -0.09\\ -0.12\\ 0.16\\ 0.06\\ -0.09\\ -0.36\\ -0.17\end{array}$	$\begin{array}{c} 0.14\\ 0.17\\ 0.29\\ 0.08\\ -0.02\\ 0.06\\ 0.12\\ 0.26\\ 0.09\\ 0.09\\ -0.06\\ 0.04\\ \end{array}$	$\begin{array}{c} -0.05 \\ -0.13 \\ -0.18 \\ -0.56 \\ 0.01 \\ -0.14 \\ -0.17 \\ -0.18 \\ -0.01 \\ -0.06 \\ -0.50 \\ 0.10 \end{array}$	0.51 0.57 0.63 0.61 0.37 0.41 0.44 0.81 0.49 0.41 0.36 0.48	0.53 0.59 0.64 0.44 0.47 0.37 0.43 0.60 0.36 0.37 0.70 0.55	0.88 0.94 0.91 0.75 6.73 0.66 0.83 0.88 0.65 0.51 0.58 0.68	1.04 1.15 0.95 1.14 0.93 0.99 0.94 0.89 0.77 0.84 0.67 0.68	1.38 1.29 1.58 1.40 1.44 	
S 723	-0.23	0.07	0.23	0.15	0.64	0.63	0.97	1.15	1.74	
1 3	0.03	0.08	0.06	0.16	0.04	0.05	0.06	0.09	0.07	

НАБЛЮДАЕМЫЕ ЦВЕТА И СРЕДНЕКВАДРАТИЧНЫЕ ОШИБКИ. ОЦЕНЕННЫЕ ПО ВСЕМ НАБЛЮДАВШИМСЯ ЗВЕЗДАМ

Полученные цвета сравнивались с цветами звезд, эквивалентных по температуре спектральных классов и имеющих нормальный химический состав. Эквивалентные спектральные классы были принягы, согласно [11], следующими:

S3	S 5	S7	S10				
М3	M6	M8	M9-10				

Цвета звезд сравнения получены путем экстраполяции результатов широкополосной фотометрии [10] и показаны на рис. 1 пунктирными линиями.

Сравнение наблюдаемых и рассчитанных цветов показывает, что у всех исследованных S звезд имеется недостаток цвета [0.98] — [1.54]. Как видно из рис. 2, этот недостаток цвета коррелирует с видимой звездной величиной m_v соответствующих звезд. Это указывает, по-видимому, на то, что полученные нами цвета искажены межзвездным селективным поглощением. Для учета влияния этого эффекта на полученные значения цветов мы приняли, что свободные от межзвездного селективного поглощения цвета [0.98]—[1.54] исследуемых звезд должны быть равны соот-

ветствующим значениям для звезд эквивалентных спектральных классов. Тогда для каждой звезды можно найти избыток цвета Е {[0.98]—[1.54]}.

Рис. 2. Зависямость величины [[0.98]-[1.54]]_{набл}-[[0.98]-[1.54]]_{рассч.} от визувльной звездной величины V.

По величине этого избытка Е {[0.98]—[1.54]} можно найти избытки в других цветах, приняв закон межзвездного поглощения, согласно [12], в виде

$$\Delta m \sim \frac{1}{h}$$
 (1)

Вычисленные согласно (1) отношения $\frac{E\{[i] - [1.54]\}}{E\{[0.98] - [1.54]\}}$ приводятся в

табл. 4. Исправленные таким образом за межзвездное поглощение цвета представлены на рис. 1 вместе с наблюдаемыми цветами и цветами звезд эквивалентных спектральных классов. Сравнение исправленных за межзвездное поглощение цветов с рассчитанными цветами соот-

Таблица 4

ЗНАЧЕНИЯ $\frac{E[[\Lambda] - [1.54]]}{E[[0.98] - [1.54]]}$									-	
). NKN	0.98	1.47	1.54	1.72	1.75	1.98	2.02	2.17	2.23	2.39
$\frac{E\left\{\left[\bar{h}\right] - \left[1.54\right]\right\}}{E\left\{\left[0.98\right] - \left[1.54\right]\right\}}$. 1.00	0.084	0.00	-0.183	-0.21	0.389	-0.415	-0.507	-0.542	-0.623

ветствующих звезд показывает, что у большинства звезд имеется явное различие наблюдаемых и рассчитанных цветов на 1.75 мкм н 2.39 мкм. На длине волны 1.75 мкм у звезд SX Peg, 40¹ Ori, S 98, R Cam наблюдается большой избыток. У звезд HR 8714, V 57 Peg, S 110, S 20 цвета близки к рассчитанным. Остальные звезды по величине избытка занимают промежуточное положение между этими двумя группами. У них избыток есть, но он сравнительно небольшой. На длине же волны 2.39 мкм у всех звезд наблюдается завал в спектре, обусловленный, по всей вероятности, молекулами СО.

Рис. 3. Зависимость цветов [1.75] — [1.54], исправленных за межэвездное поглощение, от температурного подкласса звезд.

Рис. 4. Зависимость цветов [1.75] — [1.54], исправленных за межзвездное поглощение, от содержания циркония.

Интересно, что среди звезд с нормальными показателями цвета [1.75]—[1.54] не оказалось ни одной переменной звезды, в то время как звезды переменного блеска встречаются только среди звезд с избытком на 1.75 мкм.

Относительно происхождения избытка, наблюдаемого на 1.75 мкм. трудно пока сказать что-либо определенное. Возможно, что наблюдаемые.

ИНФРАКРАСНАЯ ФОТОМЕТРИЯ 5 ЗВЕЗД

распределения ИК-излучения S звезд обусловлены особенностями химического состава их атмосфер и — как следствие этого — различиями в зависимости непрозрачности от длины волны в разных звездах. Не исключено также, что наблюдающееся избыточное излучение обусловлено наличием газопылевой оболочки, излучающей в диапазоне $1.5 \div 2.0$ мкм и поглощающей на 2.39 мкм из-за присутствия в этой оболочке молекул СО. В последнем случае следовало бы ожидать обратной корреляции величины избытка с температурой звезды. Однако такой корреляции, насколько можно судить по нашим данным (рис. 3), нет. Нет также корреляции величины этого избытка с содержанием циркония (рис. 4). Для выяснения причин наблюдаемых особенностей ИК-излучения необходимы, по-видимому, наблюдения на более длинных волнах.

Бюраканская астрофизическая обсерватория

INFRARED PHOTOMETRY OF S STARS

A. A. AKOPIAN, V. V. KIRIAN, Yu. K. MELIK-ALAVERDIAN, H. M. TOVMASSIAN

Results of observations of S stars in $0.98-2.39 \ \mu m$ region are presented. Infrared excess at 1.75 μm in some of the stars and absorption at 2.39 μm in the spectra of all observed stars is detected.

ЛИТЕРАТУРА

- 1. R. F. Wing, S. J. Yorka, M. N., 178, 383, 1977.
- G. Neugebauer, R. B. Leighton, Two Micron Sky Survey, Prol. Catalog, NASA SP-3047, 1969.
- 3. G. W. Loockwood, R. F. Wing, Ap. J., 169, 63, 1971.
- 4. H. L. Johnson, R. I. Thompson, F. F. Forbes, D. L. Steinmater, P. A. S. P., 85, 179, 1973.
- 5. D. McCommon, G. Munch, G. Neugebauer, Ap. J., 147, 575, 1967.
- 6. P. B. Boyce, W. M. Sinton, A. J., 69, 534, 1964.
- 7. C. B. Stephenson, Publ. Warner and Swasey Obs., 2, 23, 1976.
- 8. Б. В. Кукаркин, П. Н. Холопов, Ю. Н. Ефремов, Н. П. Кукаркина, Н. Е. Курочкин, Г. Н. Медведева, Н. Б. Перова, В. П. Федорович, М. С. Фролов, Общий каталог переменных эвезд, Изд. АН СССР, М., 1969.
- 9. P. C. Keenan, R. F. Garrison, A. J. Deutsch, Ap. J., Suppl. ser., 28, 271, 1974.
- 10. H. L. Johnson, Ann. Rev. Astron. Astrophys., 4, 193, 1966.
- 11. P. C. Keenan, W. W. Morgan, Ap. J., 94, 501, 1941.
- 12. A. E. Withford, A. J., 63, 201, 1958.

675