Mathematical Problems of Computer Science 48, 50--56, 2017.

Multiplatform Use-After-Free and Double-Free Detection
in Binaries *

Grigor S. Keropyan, Vahagn G. Vardanyan, Hayk K. Aslanyan, Shamil F. Kurmangaleev and
Sergey. S. Gaissaryan

Ivannikov Institute for System Programming of the RAS
e-mail: {goqor, vaag, hayk, kursh, ssg}@ispras.ru

Abstract

Use-after-free (UAF) defects are a class of memory corruption bugs, which occur
when a program continues to use a pointer after it has been freed. Double-free (DF)
defects arise when the same memory is freed more than once. The developed platform is
capable to analyze binaries of several architectures (x86, x86-64, MIPS, POWER-PC,
ARM) and is based on program static analysis approach. For program analysis SDG
(System Dependence Graph) machine-independent representation is used. SDG combines
call graph, control and data flow graphs of the program. The tool consists of two main
components: SDG generation and analysis of the obtained SDG. SDG generation is
implemented using lda Pro [1] disassembler and Binnavi [2] static analysis platform.
Experimental results prove the scalability and effectiveness of the developed framework.
The tool is tested on several test suits such as Juliet [3]. It also has detected a number of
well-known bugs in real-world projects .

Keywords: Binary static analysis, Use-after-free, Dangling pointer detection.

1. Introduction

Detecting bugs in software is an important task to help to improve security and reliability. It can
be done at any time during the software lifecycle. Ideally, all bugs are found during the testing
phase before the software is deployed. However, software testing does not find all possible bugs
at any given time. Moreover, when a programmer uses memory unsafe languages, such as
C/C++, these bugs can lead to security violations. Despite this, these programming languages are
still popular because of high performance. A pointer pointing to a memory location that has been
deleted (or freed) is called a dangling pointer. UAF defect arises in case of the usage of dangling
pointer and DF defect arises in case of deleting (or freeing) it.

There is a line of research specifically focusing on detecting UAF defects. In general, they
can be detected through both static and dynamic analyses. Static analysis methods are often

50

* The paper is supported by RFBR grant 18-07-01154

mailto:goqor@ispras.ru
mailto:vaag@ispras.ru
mailto:hayk@ispras.ru
mailto:kursh@ispras.ru
mailto:ssg@ispras.ru

G. Keropyan, V.Vardanyan, H. Aslanyan, S. Kurmangaleev and S. Gaissaryan 51

based on the disassembly process. Dynamic analysis methods try to trace the program execution
and search for memory state to carry out the analysis.

In this paper, we introduce a new approach for detecting UAF defects which supports
multiple target architectures and is based on graph representation of program. At first, a system
dependence graph (SDG) is generated, which combines the call graph, interprocedural data
dependences, the control flow graph and the data flow graph. The background for SDG
generation is Binnavi static analysis platform and REIL (the reverse engineering intermediate
language) representation [14]. Finally, the main algorithm analyzes SDG for detecting UAF and
DF defects. Fig. 1 represents the main architecture of the proposed tool.

2. Related Work

Several works are dedicated to source code analysis. N. Nethercote develops an instrument
named memcheck using Valgrind [4] which can check all of the memory read / write operations
and the interception of calls like malloc, new, free, delete. It is good for detecting memory
management problems, but cannot deal with aliasing problems. cppcheck [5] can detect possible
memory errors, and provides a simple analysis such as mismatching allocation and deallocation.
More detailed analysis is done by Polyspace [6] and Frama-C [7]. The platforms gather several
analysis techniques into a single collaborative extensible framework. These tools are mainly
focused on safety verification and have several plugins for detecting security violations.

Usually the source code is not available and a binary analysis is required. Additionally, the
binary analysis can detect bugs, which do not exist in source code and are generated by compiler
during various transformations.

Dynamic analysis solutions ([8], [9], [10]) for detecting UAF defects generally introduce a
high performance overhead, and may miss lots of bugs because they are only able to explore a
small portion of the program execution space.

In [11] the authors represent the tool GUEB for static finding of UAF defects in binary files.
At first, they track heap operations and address transfers, taking into account aliases, using a
value analysis. Then they use these results to statically identify the UAF defects. Finally, they
extract subgraphs, for each UAF, describing sequentially where the dangling pointer is created,
freed and used. However, the whole process of detecting UAF is not automatic. For instance, the
user should manually identify all wrappers to free/malloc functions, which, mainly are not
applicable for large binaries. S. Cesare represents an approach [12] for detecting UAF defects
using decompilation and data flow analysis. As decompilation is not sound, program behavior
may be underapproximated leading to false negatives. Another tool, which is based on static
analysis, is represented by D. Dewey et al. [13]. They use gen-kill analysis for detecting
available expressions, then they use data flow analysis for determining UAF defects. Dataflow
analysis is implemented on small number of x86 assembler instructions, hence their tool works
only on x86 binaries.

The suggested approach in the article makes possible to detect UAF and DF bugs in binaries
of several architectures. Unlike GUEB it does not need user interaction. The tool does not
require high performance overhead and detects defects with 30% false positive rate in average.

52 Multiplatform Use -After-Free and Double-Free Detection in Binaries

Binary file
Assembler
REIL
5DG slice 1 5DG slice 2 SDGslice n
UAF for slice 1 UAF for slice 2 UAF for slice n

Fig.1 Tool architecture.

3.1 SDG Generation

System dependence graph is one of the most detailed structures for representing semantics of the
program. It combines call graph, interprocedural data dependences, control and data flow graphs.
At the first stage of SDG generation target program is disassembled using IDA Pro. This allows
to import disassembled binary into Binnavi platform. Binnavi platform is used to recover the
structure of the target program, generate data, control and interprocedual dependencies between
instructions and translate program to REIL representation. REIL representation is independent of
target architecture and allows to analyze binaries from different architectures such as x86,
x86_64, ARM, MIPS and PowerPC. Furthermore, REIL representation has only 17 atomic
instructions and only two instructions for memory access (stm: store to memory, Idm: load from
memory) which allows to simplify the analysis process. At first stage of SDG generation
algorithm tries to find all free functions of the program. Then the algorithm tries to slice program
into independent pieces. Slicing of the program is performed on the call graph. For each free
function call, algorithm generates all the paths that are leading to that function. Slicing allows to
drop away the significant part of program and perform analysis only on the parts which contain
memory free operations. The length of the paths can be configured by the user. Finally, the
algorithm generates SDGs for each slice. Vertices of these SDGs correspond to REIL instruction
and edges correspond to control dependences, data and interprocedural data dependences
between instructions. For each REIL instruction an SDG vertex is constructed. Two vertices are
connected if there are data (interprocedural or intraprocedural) or control dependencies between
the corresponding REIL instructions (Fig.2). Generated slices may contain many common parts
(functions). So, SDG generation algorithm uses dynamic programming approach: information
about dependencies for all functions is cached in database and reused during SDG generation for
each slice. Another big advantage of the program slicing approach is the possibility to organize

G. Keropyan, V.Vardanyan, H. Aslanyan, S. Kurmangaleev and S. Gaissaryan 53

whole analysis parallel on each independent slice. This is especially important while analyzing
big binaries (over 30 MB) where the size of the recovered graphs can grow enormously huge.

sub esp, 4, t0 — strebp, , 10

and t0, FFFFFFFEh, esp subesp, 4, t1

! '

dt1, FFFFFFFFh
stm 8000012h, , esp andtl, , esp

Il +
str 8000000h, , t1 stmt0, , esp
v 4
jec1,,tl jec 1, ,t0

Data dependences
— Control dependences

Fig.2 Slice example.

3.2 Detecting UAF and DF

The main analysis for detecting UAF and DF bugs is performed on generated SDG slices. Root
of these slices is the call to the system free function. We start analysis from the system free
function and try to find freed pointer (argument of free function). It can be easily done by using
the existing data dependences. The difficulty arises when the freed pointer may have several
aliases. Performing alias analysis on the whole program can bring huge performance overhead.
In our approach, we have implemented a simple analysis on SDG which tries to find all aliases
for the given pointer within a function using available data and control dependencies. There are
several possible cases for handling found freed variable:

a. Freed pointer is defined in the function, which contains call to free function.

b. Freed pointer is in global scope.

c. Freed pointer is passed as an argument to the observing function.

First and second cases algorithm handles by traversing SDG by control dependencies starting
from the free function call. Traversing by control dependencies allows to find paths (if any) from
free to use of the pointer (or one of its aliases). Then, using data dependencies, algorithm checks
redefinitions of pointer on each found path. If there are no redefinition on one of the paths,
algorithm reports UAF or DF error.

Third case, when the freed pointer is passed to the observing function as an argument,
algorithm marks that function as free and adds it to the free functions list. Then the whole
analysis of finding UAF is repeated until no new free function is found.

Using SDG as an intermediate representation makes analysis path sensitive and
interprocedual. However, there are some limitations in the current stage of the development. The
main limitation is that during dependencies construction we assume that all arguments are passed
to the functions by stack. Support of different calling conversation is in active state of
development.

54 Multiplatform Use -After-Free and Double-Free Detection in Binaries

3. Experimental Results

Suggested tool is tested against several well-known test suits such as Juliet [3]. Results show that
we can find all the UAF and DF errors presented in this suit with 5% false positive rate in
average. The tool is also tested on dozens of real word programs that contain real UAF and DF
bugs. In the Table 1 the list of projects with UAF and DF defects are presented. These defects
were admitted and fixed by the projects maintainers in the newer versions. Last three columns of
the table contain analysis results of suggested tool. All tests are performed on the server with 20
physical intel xeon 2.3 GHz processors. Analysis time column in the table proves effectiveness
of SDG splitting technique for parallel analysis.

Table 1: Analysis result on several well-known projects containing UAF and DF defects.

. . Analysis time UAF
Project . Project False
Version ; and DF o
name size 5 cores | 10 cores | 20 cores positive
count
jasper 1.900.1 | 1MB 231s 177s 166s 3 0%
giflib 5.1.2 50 KB 13s 10s 10s 1 0%
libtiff 4.0.3 1 MB 278s 160s 100s 12 33%
gnome= 1 381 |336KB| 74 52 48 1 0%
nettool
openslp 1.2.1 | 700 KB 60s 56s 40s 4 50%
libssh 0.5.2 | 700 KB 190 168 99 19 21%

The presented tool is also capable to find UAF and DF bugs in gnome-nettool and giflib
packages of Debian distributive. False positive rate for examined programs is competitive with
other well-known techniques [9], [11], [12]. Moreover, the presented tool is multiplatform and
can be used for analyzing binaries for different target architectures.

4. Conclusion and Future Work

In the paper a binary static analysis tool is presented that detects UAF and DG defects on several
modern architectures. The analysis is performed on System Dependence Graph (SDG) of the
target program. The proposed algorithm includes two steps: generation of SDGs for program
slices where the root of each slice is a “free” function and analysis of generated slices. Alias
analysis is performed on each graph to avoid performance overhead of finding aliases in the
whole program. The approach makes it possible to perform the analysis in parallel for each
independent slice.

Development and improvement of the tool is in active state. We plan to add support for
different calling conventions and continue testing on different real-world programs and libraries
to reduce false positive rate and improve quality of analysis.

G. Keropyan, V.Vardanyan, H. Aslanyan, S. Kurmangaleev and S. Gaissaryan 55

References

[1] [Online]. Available: www.hex-rays.com/products/ida
[2] [Online]. Available: www.zynamics.com/binnavi.html
[3] [Online]. Available: www.samate.nist.gov/SRD/testsuite.php

[4] N. Nethercote, "Dynamic Binary Analysis and Instrumentation”, PhD Dissertation,
University of Cambridge, 2004.

[5] [Online]. Available: www.cppcheck.sourceforge.net

[6] [Online]. Available: www.mathworks.com/training-schedule/polyspace-code-prover-for-cc-
code-verification.html

[7] P. Cuoq, F. Kirchner, N.Kosmatov, V. Prevosto, J. Signoles and B. Yakobowski, "Frama-
C—a software analysis perspective,” SEFM, pp. 233-247, 2012.

[8] W. Xu, D. C. DuVarney and R. Sekar, "An efficient and backwards-compatible
transformation to ensure memory safety of C programs,” ACM SIGSOFT Software
Engineering Notes, vol. 29, pp. 117-126, 2004.

[9] J. Caballero, G. Grieco, M. Marron and A. Nappa, "Undangle: early detection of dangling
pointers in use-after-free and double-free vulnerabilities,” Proceedings of the 2012
International Symposium on Software Testing and Analysis, pp. 133-143, 2012.

[10] B. Lee, C. Song, Y. Jang and T. Wang, "Preventing Use-after-free with Dangling Pointers
Nullification," in NDSS Symposium 2015, pp. 17-32, 2015.

[11] J. Feist, L. Mounier and ML. Potet, "Statically detecting use after free on binary code,"
Journal of Computer Virology and Hacking Techniques, vol. 10, no. 3, pp. 211-217, 2014.

[12] S. Cesare, "Detecting bugs using decompilation and data flow analysis," in Black Hat USA,
2013.

[13] D. Dewey, B. Reaves and P. Traynor, "Uncovering Use-After-Free Conditions in Compiled
Code," in 10th International Conference on Availability, Reliability and Security, 2015.

[14] www.zynamics.com/binnavi/manual/html/reil_language.htm

Submitted 02.08.2017, accepted 20.11.2017.

Eplntwljut jnymd wqunjws hhonnnipjut ogunuugnpsdwt b
hhonnnipjut Ypjuulh mquundwt vjpwjutph huynbwpbpdwt
puqUuyjundnpd hudwljupg

Q. Lhpnpjul, 9. Jwpnuiyul, 2. Ugpubyul, ©. Ynipduiqutlh b U. Qujuupjub
Udthnthnid
Uquuws hhonnnipjutt ogunnugnpddwtt uppwjubpp hhonnnipjutt wphpuwnwph

htwn juwyyws upwjubph gquu k nptt wnwowunwd k, tpp dpwughpp swpnitwlnid k
oqunuuugnpstk] mquunyjws hhonnnipniup: Upuljyws hwdwlupgp httwpwynpnipinit b

56 Multiplatform Use -After-Free and Double-Free Detection in Binaries

wnwihu Ybpnist) nupplp Swupnupuybnnipniiutph (x86, x86-64, MIPS, POWER-PC,
ARM) Epyniwjuit Ynn b hhdudws k Ynnh vnwnply wbwhqh ypuw: Opwugph whwhgh
hwdwp oquwugnpdynid L SDG (System Dependence Graph) ubpkuwjhg wtlufu
ubpuyugnid: SDG-u ukpwnmid E dpwqph Gwskph, pEjudupdwit b
Jwhijwsnipniuibph gpudubpp: SDG-u Yunnignmd b hhdudkng Ida Pro [1]
nhuwuubdpitph b Binnavi [2] utnwwnpl] wtwihqh hwdwupgh Jpu: @npdupupuljut
wpniupuipp wywgnignid kb wkpuyugwé hwdwlwupgh phyuyubihnipmniut o
wpnnibwybnnipniip: Anpshpp phunwynpdl; £ pwquuphy phunwynpdubt
hwdwluwunpgtph Jpw, npnughg E Juliet-p [3]: Uju twl hwjntwpbpl) £ puquuphy
huyinth vpuwutp jhpunwlwu spugpbpnid:

MyabTuiargopMHoOe HAXOKIEHUE OIMOOK UCI0JIb30BAHUSA
MAMSITH I0CJIe 0CBO00K/IEHUS U TIOBTOPHOT0 0CBOOOKICHUSI
NMaMsiTH B OMHAPHOM KO/I€

I'. Kepomsin, B. Bapransn, A. Acnansn, 1. Kypmanranees u C. alicapsia

AHHOTAIUSA

OummOKK HCTIONB30BaHUS NMAMATH IOCIE OCBOOOXKAEHMS — OTO KJIACC OMKMOOK ITaMATH,
KOTOPBIHI BO3HMKAeT, KOTZA IIpOorpaMMa IIPOZOJDKAeT MCIIONb30BaTh IIAMATH IIOCJTIE €ro
ocBoboxgeHus. PaspabGoranHas 1tardopma crocob6Ha aHaJIM3UPOBATh OWHApHbBIE KOZBI
HEeCKOJIBKUX apxuTeKTyp (x86, x86-64, MIPS, POWER-PC, ARM) 1 ocHOBaH Ha CTaTU4YECKOM
noaxoze. [Jlna amanmsa mporpamm wucnoasdyercs SDG (System Dependence Graph),
He3aBUCHMOe OT MaIlWHbI ImpefcTaBienue. SDG o6besuHseT rpadsl BEI30BOB, YIIPaBIeHUI U
IIOTOKOB [AHHBIX IPOTrpaMMbl. VIHCTPyMEHT COCTOUT M3 ABYX OCHOBHBIX KOMIIOHEHTOB:
regepauuu SDG wu amammsa mnosnydeHHbIx SDG. I'emepanms SDG peamusoBaHa ¢
ucmosas3oBanueM aricaccembrepa Ida Pro [1] u muardopmsr cratuyeckoro ananusa Binnavi
[2]. DxcnepumeHTanbHBIE Pe3yNbTAaTHI [JOKA3BIBAIOT MAacIITAGHUpyeMoCcTbh U 3((deKTUBHOCTH
paspaboranHoro mnardopma. VHCTpyMeHT TeCTHpOBAJCA Ha Pa3HBIX TECTOBBIX Habopax,
takux Kak Juliet [3]. On Taxke 0GHAPYXUII PSIZ U3BECTHHIX e(EKTOB B peabHBIX IIPOEKTaX.

	References

