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Abstract

A system of fuzzy constructive logic developed in [1] is considered. A partial case of a
more general concept of the fuzzy constructive logic (i.e., the logical system based on the A-
scale Q, of truth values described in [2]) is investigated. Predicate formulas without functional
symbols and object constants are considered. The notions of identically P-valid predicate
formula (i.e., predicate formula which is identically true in the framework of the system
defined in [1]) and of identically G-valid predicate formula (i.e., predicate formula which is
identically true in the framework of the system described in [2]) are defined. It is proved that
any identically G-valid predicate formula is also identically P-valid (see below, Theorem 7.1).
It is proved also that any predicate formula deducible in the constructive (intuitionistic)
predicate calculus is identically G-valid (see below, Theorem 7.2).

Keywords: Fuzzy constructive logic, Predicate formula, Identically P-valid predicate
formula, Identically G-valid predicate formula.

1. Introduction

The concepts of fuzzy logic ([3]-[5]) are considered below in the framework of the constructive
point of view ([6]-[8]). A. A. Markov’s principle ([10]) will not be used. We will compare the
properties of the logical system of the extended fuzzy constructive logic ([1], [9]) and of some
system of the generalized fuzzy constructive logic ([2]).

In Section 2 below some auxiliary notions are defined and investigated. In Section 3 the
notion of fuzzy recursively enumerable set (FRES) defined in [1] is investigated. The
equivalence of this notion and the notion of generalized fuzzy enumerable set based on the A-
scale Q, (see [2]) is established. The definitions of regular, monotone, open FRES are given. In

Section 4 the relations “a P-covers B”, “a G-covers B”, “a is P-equivalent to B”, “a is G-
equivalent to 8 between FRESes a and g are introduced. In the denotations of these relations

1 This work was supported by State Committee of Science, MES RA in frame of the research project SCS 15T-
1B238.
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the prefixes and the footnotes P and G are used in the following sense: the letters P and G mean
that the corresponding notion belongs to the system considered correspondingly in [1] and [2]. In
Section 5 some operations on FRESes are introduced and investigated, in particular, recursive
operators H,, for n > 1 (these operators are used in what follows), the operations of G-union and
P-union on FRESes, the operation of G-generalization and P-generalization of FRESes. The
operation of Cartesian product of FRESes is defined in different forms in [1] and [2]; in Section
5 only some partial case of this operation is considered (however, actually, only such partial case
is used in the consideration in [1] and [2]). In Section 6 the notions of P-ideal and G-ideal are
introduced and investigated. In Section 7 the notions of G-assignment and P-assignment for a
given predicate formula A as well as the notions of G-interpretation and P-interpretation of A
concerning a given assignment and given index majorant for A are introduced similarly to the
corresponding notions given in [1] and [2]. The definitions of identically P-valid and identically
G-valid predicate formula are given; on the base of these definitions. Main theorems 7.1 and 7.2
are established concerning the properties of these notions.

2. Some Preliminary Definitions

By N we denote the set of all non-negative integers {0,1,2, ... }. By N™, where n > 1, we denote
the set of all n-tuples (xq, x5, ..., x,,), Where x; € N for 1 <i <n. By R we denote the set of
rational numbers having the form zﬂn wheren € Nyme N, 0 < zﬂn < 1. The notions of primitive
recursive function (shortly PmRF), general recursive function (GRF), partially recursive function
(PtRF), primitive recursive set (PmRS), recursive set (RS), recursively enumerable set (RES) are
defined in a usual way ([11]-[13]). We will use the notations x -y, |x —y|, x +y, x - y, 2%,
sg(x), sg(x), [x/y], rest(x,y) for some PmRF which are defined as usually ([11]-[13]). The
notions of p-operator and bounded p-operator are defined as usually ([11]-[12]). The PmRF p
and @ are defined by the following equalities:

px) =pyy <x (x=2Y = 0);

0(x) = ((2x = 2°00) = 1) +35g(x — 1.

The algorithms ' and I'"* are defined by the following equalities:

I'(x) = Zep(fx)) forx € N,

I~3(T(x)) = x forx € N.
It is easily seen that I'(x) € R when x € N, and the algorithm T estabilishes a one-to-one
correspondence between N and R. The algorithm '™ has a similar property.

3. Fuzzy Recursively Enumerable Sets (FRESes)

Fuzzy recursively enumerable set (FRES) having the dimension n > 1 is defined in [1] as a
recursively enumerable set of (n + 1)- tuples (x;, x5, ..., xp, &), Where x; E Nfor1 <i<n, e €
R. The notion of generalized fuzzy recursively enumerable set (GFRES) is defined in [2] for any
given algorithmic scale of truth values (shortly, A-scale). Let us recall (see [2]) that any A-scale
Q is described by the following parameters: (1) the set Ug of truth values; (2) the relation of
equality = between truth values; (3) the binary operations Lg and Q on truth values; the



I. Zaslavskiy 9

constants 0g and 1. In what follows we will consider only the A-scale Q, described in [2]; we
will not consider the other A-scales, and the notation ., will be replaced in what follows by Q.
Let us recall the definition of parameters of this A-scale. The set U, of truth values for Q is the
set N. The predicate of equality = for Q is the usual equality between the numbers belonging to

N. The operations xUy and x[\y are defined as, correspondingly, F‘l(maX(F(x),F(y))) and
Q Q

I'1(min(T(x), T(y))). The constants 0 and 14 are defined correspondingly as 0 € N and 1 €
N. The predicates xgy, X£Y, X<y considered in [2] are defined as I'(x) < T'(y), I'(x) #

I'(y), T'(x) < T'(y) (see [2]). Itis easily seen that all conditions introduced in [2] for A-scales are
satisfied for A-scale Q. The symbol Q will be sometimes ommitted in the descriptions of notions
connected with Q.

It is easily seen that the notion of FRES given in [1] and the notion of GFRES of the kind
described above are actually equivalent: any FRES of the form given in [1] represents a
corresponding GFRES, and the reverse statement is also true. Below we will use the notations of
such sets described in [1].

We say that an n-dimensional FRES a where n > 1 is regular if any (n + 1)-tuple of the
form (x4, x5, ..., x5, 0), Where 0 € R, belongs to a. In what follows we will consider only regular
FRESes, so the terms “FRES” and “regular FRES” are admitted as equivalent.

Note. Similar agreement concerning the regularity of all considered FRESes may be
introduced also in [1] and [2] without essential changes in the systems of definitions described in
[1] and [2].

We say that an n-dimensional FRES « is monotone if the following condition holds: if
(X1, X9, vy X, €) Ea and & < e then (xq,x3,..,x,,8) €a (cf. [2]). We say that an n-
dimensional FRES « is open if it is monotone and for any (n + 1)- tuple (x4, x5, ..., X, €) € «,
where ¢ > 0, there exists some § > ¢ such that (x;, x5, ..., x,, 6) € a (cf. [1]).

4. Some Relations Between FRESes

The relations between the FRESes considered below are different in the systems of notions given
in [1] and [2]. So, we will use the prefix “P” in the detonations of notions considered in the
framework of notions in [1] and the prefix “G™ in the detonations of notions considered in the
framework of notions in [2] (we may say that the prefix “P” is the abbreviation of the
expression: “in the sense of notions defined in [1]”, the prefix “G” is the abbreviation of the
expression: “in the sense of notions defined in [2]”).

Let « and 8 be n-dimensional FRESes. We will say that a P-covers 8 and write g if for

P

any (n+ 1)-tuple (xq,x5,..,x,,€) €EB, and any & >0 there exists an (n+ 1)-tuple
(x1, X2, ..., Xy, 6) € a such that § > & — &;. We will say that o G-covers 8 and write g if for
G

any (n + 1)-tuple (x4, x5, ..., x,, €) € f there exists an (n + 1)-tuple (x4, x5, ..., x,, 8) € a such

that & > ¢ (cf. [2]). We will say that « and S are P-equivalent (correspondingly, G-equivalent)

and write =g (correspondingly, o=4) if o< g and g (correspondingly, o = g and gca).
P G P P G G

The negations of the statements a=p and ¢=p will be denoted by axp and ¢ =p, the
G G

negations of the statements o < g and o < g will be denoted by a &, f and a &; B.
P G
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It is easily seen that if ;< g then o g but the reverse is in general not true. For example,
G P

[uy

let a be the set of 2-tuples (x, €) such that (x,e) Eeaifandonlyifx e Nande € R, 0 < e < -

=N

Let B be the set of 2-tuples (x, €) such that (x,¢) € fifandonlyifxe Nande € R,0 < e <-.
Then gco but g &; a.
P

N

5. Some Operations on FRESes

For the description of operations considered below we will introduce some auxiliary notions. We

will introduce for any n > 1 the recursive operator H,, transforming any n-dimensional FRES «

to some n-dimensional FRES H,,(a) (the notion of recursive operator is defined as in [13]). This

operator is defined by the following conditions: 1) If a is any n-dimensional monotone FRES,

then H (a)ca (hence, H, (a)ca ). 2) For any n-dimensional FRES a the following statement
G P

holds: if (x1, x5, ...,xp,€) € Hy(a) and § < g, then (xq, x5, ..., X, 6) € Hy(a) (so, the FRES
H,(a) is regular and monotone for any regular «). 3) For any n-dimensional FRES « the
following statement holds: if (x,, x5, ..., x5, €) € a, where € > 0, then (xq, x5, ..., xp,, €) € H,, ()
if and only if there exists some § > ¢ such that (x4, x5, ..., x,,, §) € a.

It is easily seen that for any n > 1 there exists a recursive operator H, such that the
mentioned conditions are satisfied (see [13]).
Lemma 5.1: If « is an n-dimensional monotone regular FRES, then H,, (@) is open.
Lemma 5.2: If a is an n-dimensional monotone regular FRES, then H,(@)=za if and only if a is

open.
Lemma 5.3: If « and g are n-dimensional monotone regular FRESes such that o< g, then
G

Ha(@) S H, (8):

Lemma 5.4: If a is an n-dimensional monotone regular FRES and g is an open FRES such that
acp then H (a)c .
G G

Lemma 55: If a and p are n-dimensional monotone regular FRESes then
Hn(aUﬁ)an(a)LGJHn(ﬁ)’ Hn(aﬂﬂ)an(a)QHn(ﬁ)-

The proofs are easily obtained using the definition of H, («).

We may say that in the mentioned cases H,, (@) is a maximal open set contained in .

Now let us consider some operations on FRESes. The G-union g (correspondingly, G-
G

intersection N ) of n-dimensional FRESes a and S is defined as an n-dimensional FRES y
G

such that (xq,xy,...,x,,n) €y if and only if there exist e € R and § € R such that
(X1, X2, o, X, ) € @, (Xq,X2, ..., %Xy, 6) € B, n <max(g,§) (correspondingly, n < min(g, d))
(cf. [2]).

The P-union oy g (correspondingly, P-intersection o g) of some n-dimensional FRESes
P P
a and g is defined as H,(«Up) (correspondingly, H, («np))-
G G
It is easily seen that there exist recursive operators realizing the operations ¢« Ug, aNg.
G G

aUp, aNp. The operations g and N g for monotone FRESes as well as the operations
P P G G
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aUp and ¢Np for open FRESes give the same results as, correspondingly, the union and the
P P

intersection of FRESes in the set-theoretical sense.

The notion of projection of a given FRES concerning a given coordinate is given in a same
way for two mentioned kinds of notions, so, we omit the prefixes P- and G- in the description of
this notion. We say that an (n — 1)-dimensional FRES g is the projection of an n-dimensional
FRES a, where n > 1, concerning i-th coordinate x;, where 1 <i <n, if the following
condition holds: (xq, X2, «uo) Xj—1, Xj41) o r Xpy ) € B 0T (X1, X5, ooy Xj—1, Xj) Xjg1y +0r X, €) € ¢ TOI
some x; € N. In the mentioned cases the FRES g will be denoted by I} (a).

We say that the i-th coordinate x; (where 1 < i < n) is fictitious for an n-dimensional FRES
a if the following condition holds: (x4, x5, ..., X;_1, X, Xj41, -, Xp, €) € a if and only if
(%1, X3, <o) Xi—1, Xiz1, - X, €) € Q.

By Vi (correspondingly, Vi), where n>1, we denote the FRES such that
(x1,Xg, .., Xn, €) € Vi (correspondingly, (x4, %y, ..., xn, €) € Vi) when x; € N for 1 < i < n and
0 <& <1 (correspondingly, 0 < & < 1). By A™ where n > 1, we denote the FRES such that
(X1, X9, o, Xp, &) EA"iIfx; ENfOr1 <i<n,e=0.

The G-generalization of an n-dimensional FRES «, where n > 1 concerning i-th coordinate
is defined as an n-dimensional FRES £ such that (xy,x5, ..., Xi—1,V, Xj41, -r Xn, €) € B if
(X1, X2, o) Xi—1, Xig1) - X, €) ELF () (for any y € N). The G-generalization of an 1-
dimensional FRES a concerning its single coordinate is defined as the set of all pairs having the
form (y,e), where y € N and (x;,¢) € a for some x; € N. The G-generalization of an n-
dimensional FRES a (both for n > 1 and for n = 1) concerning its i-th coordinate will be
denoted as T7; (a). The P-generalization of an n-dimensional FRES a concerning its i-th
coordinate is defined as H, (T}, (a)); it will be denoted by 17, ().

The Cartesian product of FRESes a and f is defined in different ways in [1] and [2]; we
will consider some partial cases of the corresponding notions when the second set 8 has the form
V# or Vi for n > 1. Actually only such partial cases are used in [1] and [2] in the further
considerations. As it will be seen from the definitions given below, the FRESes axV} and a x
V# are G-equivalent for any FRES « (though V# and V' are not G-equivalent!). So, we will omit
the symbols G and P in the notations of these FRESes. Now let a be an n-dimensional FRES,
where n > 1. By a X V™™, where m > 1, we will denote the (n + m)-dimensional FRES defined
by the following condition: if (xy,x,,...,x,, &) € @, then (x1, X5, .., Xp, V1, Y2, oo Y €) € @ X
V™, where x; EN, y; €N for 1 <i <n, 1<j<m. (Clearly the transformation of a to a x
V™ may be characterized as the introducing of m fictious variables in ).

The operation T;; of transposition of i-th and j-th coordinates in an n-dimensional FRES «
and the operation of substitution S;; of the j-th coordinate for the i-th coordinate in an n-
dimensional FRES « are defined in an obvious way similar to the corresponding definitions
given in [1] and [2].

6. ldeals

A non-empty constructive set A of n-dimensional monotone FRESes is said to be n-dimensional
G-ideal if the following conditions hold: (1) If « € A and g, then f € A. (2) If a € A and
G

B € A, then aLGJﬁeA (cf. [2]).
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A non-empty constructive set A of n-dimensional open FRESes is said to be n-dimensional
P-ideal if the following conditions hold: (1) If « € A and g, then g € A. (2) If @ € A and
p

p €A, then gUpea (cf. [1]).

The notion of constructive set is interpreted following to the principles of constructive
mathematics ([4]-[6]).

Lemma 6.1: If 4; is an n-dimensional G-ideal and 4, is the set of FRESes having the form
H,(a), where @ € 44, then 4, is a P-ideal.

The proof is easily obtained using the corresponding definitions.

An n-dimensional G-ideal (correspondingly, P-ideal) A is said to be complete if V} € A
(correspondingly, VF € A). Clearly, in this case any n-dimensional monotone (correspondingly,
open) FRES belongs to A. An n-dimensional G-ideal or P-ideal is said to be null-ideal if « € A
only when O‘EA” or a?A” (clearly, in this case such statements are equivalent).

7. Predicate Formulas and Their Interpretations

We consider predicate formulas (as in [1] and [2]) on the base of logical operations &,v,>,—,V,3

without functional symbols and object constants. The symbols of truth and falsity, T and F, are
considered as elementary formulas. Predicate formulas will be denoted as A, B, C, D (probably,
with indexes). We suppose that the sequence xi,xy, ..., %y, ... 1S fixed including all object
variables contained in all predicate formulas.

Index majorant for a predicate formula A is defined as any natural number which is greater
or equal to all indexes i of object variables x; contained in A and the dimensions of all predicate
symbols contained in A (cf. [2]).

By H(°™ we denote the constructive (intuitionistic) predicate calculus on the base of
predicate formulas of the kind mentioned above ([14]).

Let A be a predicate formula, let p;, p,, ..., p; be the list of all predicate symbols contained in
A. Let us denote the dimensions of py,p,, ..., p; correspondingly by k4, k,, ..., k;. Let k be an
index majorant for the formula A. We define the G-assignment (correspondingly, P-assignment)
for A as the sequence ¢4, @5, ..., ¢;, Where any ¢; for 1 <i < is an k;-dimensional G-idelal
(correspondingly, P-ideal). The sequence ¢4, @, ..., ¢; we will denote in what follows by &.

Let A be a predicate formula, k be an index majorant for A. We define the G-interpretation
Il o1 (A) (correspondingly, P-interpretation Ilp 4 x(A)) of the formula A concerning G-
assignment & (correspondingly, P-assignment @) for A and for index majorant k of A by
induction using the construction of A. The G-interpretation Il; ¢, (A) is defined similar to the
definition of Mg, (A) given in [2] (see [2], pp. 272-273). The P-interpretation Ilp ¢, (A) is
defined similar to the definition of I1, , (4) given in [1] (see [1] pp. 50-51).

We say that a predicate formula A is idenitcally G-valid (correspondingly, identically P-
valid) if the G-interpretation (correspondingly, P-interpretation) of the formula A concerning any
G-assignment (correspondingly, P-assignment) & for A and any sufficiently great index majorant
k for A is a complete G-ideal (correspondingly, complete P-ideal).

Let us introduce some auxiliary notations. If @ is a G-assignment or P-assignment for a
formula A, and @ has the form ¢4, ¢,, ..., @; where any ideal ¢; has the dimension k;, then by
H(®) we denote the sequence 4, Y-, ..., 1;, Where any ideal ¥; is the set of k;-dimensional
FRESes having the form H,,(6), where m = k;, 6 € @;. It is easily seen that if ® is a G-
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assignment or P-assignment for a formula A then H(®) is a P-assignment for A. Besides, if @ is
a P-assignment for A, then H(®) is equal to ® (in some natural sense).
Lemma 7.1: Let A be a predicate formula of the kind mentioned above, let @ be a G-assignment
for A, let k be an index majorant for A, let I1; 4, (A) be the G —interpretation of A concerning
@ and k. Let Iy o)k (A) be the P-interpretation of A concerning H(®) and k. Then
Ip o),k (A) has the form H,, (I1; ¢ x (A)) Where m is the dimension of I1; 4 , (A).
The proof is obtained using the induction on the construction of the formula A.
Theorem 7.1: If a predicate formula A is identically G-valid, then it is also identically P-valid.
The proof is obtained using Lemma 7.1 and the definitions of identically P-valid and
identically G-valid predicate formula.
Theorem 7.2: If a predicate formula of the kind mentioned above is deducible in the
constructive (intuitionistic) predicate calculus H€°™ then it is identically G-valid
The proof is similar to the proof of Theorem 5.1 in [1] (see [1] pp. 57-63).
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13 wupgnpny Ynbunpninhy npudwpwinipyut mwppkp
Alukph dhol hnjuhwipwpbpnipinitiitph dwuht
b. Quujudulp

Udthnthnid

Thunwupynid £ ny wupgnpny §nuunpnijnhy nnpudwpwtnipyut hwdwlwupgp,
npp Gqupugpjwsé E [1]-nud: Fhunwplymd £ twlb ny qqupgqnpny nbunpniljnhy
npudwpuimputt wybjh punhwunip qunuthwph npny  dwubtwynp nhuyp
(wyuhtuptt’ npudwpwtwut hwdwlwupg, npp hhduynd £ [2]-nd tbpuyugdus
npudwpwbwlut  wpdbipukph Q, A-uwingmuih Jpw): Yhunwplhynud  Bu
wypbnhjuwnuwhtt pwtwdbbp wpwbg $niulghntiwy wpwbubph b wpwpluyulwb
hwuwnwwunniuubph: Uwhdwbynid o unybwpwp P-doduphwn (wyuhtupt’ [1]-nud
tjupugpyus mpudwpubtwljubt hwdwljupgh mbuwljbnhg tnyuwpwp dodwnphwn)
b unybwpwup G-&duphwn  (wyuhtpt®  [2]-nd tjupugpus  hwdwlupgh
wnbkuwltnhg unyuwpwn Loudwphwn) wynptnhjuwnwght putwdlh
hwuljugnipniiubpp: Uywgnigynid £ (phnptd 7.1), np unybwpwp G-dodwphun
gutjugws wpbnphjuwnuwhtt pwbwdl Yhuh twb tnybwpwp  P-dodwphun:
Uwyuwgnigynid £ twlb (phnpbd 7.2), np Yntunpnijnpy (htnnithghnthumnwluin)
wynbknhjuwnwghtt hwpymd wpnwdynny guujugus pwbwdl inybhwpwp G-dodwphun
k:

O COOTHOIICHUSAX MEKAY PA3JIMYHBIMU (POPMAMH HEUYETKOH
KOHCTPYKTHBHOM JIOTUKH

H. 3acmaBckuit
AHHOTAauA

PaccmarpuBaeTcss cucTeMa HEYCTKOW KOHCTPYKTHBHOW JIOTMKH, TpeacTaBieHHas B [1].
Hccnenyercst Takke HEKOTOPBIM YACTHBIA Cilydaid OOOOIICHHOW KOHIEMIIUU HEYETKOU
KOHCTPYKTHBHOW JIOTMKH, TpeJCTaBiIeHHONH B [2] (a WMeHHO, JlOrMYecKas CHCTEeMa,
OCHOBaHHAsl Ha aITOPUTMHYECKOH IKane (A-IKalie) JOTHYecKuX 3HaueHu (),, ONMCAHHOM
B [2]). PaccmarpuBarorcs mnpeaukaTHbie (GopMysbl 6e3 (YHKIIMOHAIBHBIX CHMBOJIOB M
MIPEIMETHBIX KOHCTAHT. ONpeaestoTCs MOHATHUS TOXKAECTBEHHO P-NCTUHHON IpeayuKaTHOH
dopmysl (TO ecTh IpeAUKATHOH (HOPMYIIBI, TOXAECTBEHHO UCTUHHOW C TOYKH 3peHUS
CHUCTEMBI TOHSATHM, BBeAEHHBIX B [1]) ¥ TOXIECTBEHHO G -MCTUHHOMN IIpeIuKaTHOM
¢dopmynsl (TO ecTh IMpeAUKAaTHON (HOPMYIIBI, TOXAECTBEHHO WCTUHHON C TOYKM 3pEHU
CUCTeMbI TIOHATHI, BBeZEHHBIX B [2]). JloxaspiBaercs (Teopema 7.1), 4uTro BCskas
TOXKAECTBEHHO (-UCTUHHAA IpefuKaTHasd (GopMyJa ABIAETCA TaKXKe TOKIECTBEHHO P-
uctuHHOI. Kpome TOro, mokasprBaercs (TeopeMa 7.2), 4To BCAKas IpefUKaTHAs GopMyIIa,
BBIBOAMMAsA B KOHCTPYKTHBHOM (MHTYHI[MOHUCTCKOM) MCYHCJIEHUN IIPeJUKaTOB,
SIBJIIETCSA TOXKIECTBEHHO (G -MCTUHHOM.



