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Abstract

The switching construction was used in several recent papers to construct special
mappings on finite fields. In this paper we generalize the concept of switching to a
k-switching with 1 < k < n. We present some general properties of k-switching and
describe permutations produced using k-switching.
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1. Introduction

Let F: Fpn — Fynand (71, ...,7,) be an F-basis of Fn. The uniquely determined functions
fi:Fgpn — F,, 1 <@ <n,such that

F(x) = fiz) -m+... 4 ful®) - Yo,

are called the coordinate functions of F' with respect to the basis (71, ..., 7,). The component
functions of ' over the subfield F, are the functions Trgn(aF(z)) with a € F}., where
Trynjq is a trace mapping of Fgn into F, given by

Trqn/q:x—l—xq—i—...—i—an_l

The set of component functions of a mapping coincides with one of its coordinate functions:

Proposition 1: Any component function over ¥y of a mapping F' : Fyn — F n is a coordi-
nate function with respect to some F-basis, and vice versa.

Proof.  Recall that any basis (71, ...,7,) has a unique dual basis (71, ...,%,) defined by

~ 1 ifi=j,

for all 1 <1,j <n. In particular for any a € Fy» the coefficients @; in the linear combination
a =Y, a;y, are given by
a; = Trenjq(Fia).

D
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Consequently, the coordinate function f;(z) of F'(z) with respect to (71, ..., ) is the com-
ponent function Trgn /q(5:F(x)). On the other hand, a component function Trgn ,(aF'(x)) is
a coordinate function of F'(z) with respect to the dual basis of any basis containing o. W

A mapping F' : Fpn — Fn is called a switching of G : Fgn — Fyn if there is an F,-basis
(71, - --,7n) such that all but the first coordinate functions of F' and G are equal, i.e.

F(x)=fi(z)-m+... + ful®) - Y,

and
G)=gi(x) v+ ...+ gn(T) - Yn,

with fi(z) # ¢1(x) and fi(x) = g;(x) for all 2 < ¢ < n. Switching was used to produce
interesting classes of special mappings of finite fields in [2]-[8]. Construction of bijective
mappings by changing two coordinate functions of the identity mapping were studied in
[5, 7]. In this paper we generalize the concept of switching to a k-switching with 1 <k <n
and describe permutations produced using k-switching.

2. k-Switching

Definition 1: Let 1 < k < n be an integer. A mapping F' : Fpn — Fopn is called a k-
switching of G : Fgn — Fon over Fy if k is the minimal integer such that there is an F-basis
(V1 -+ Yn) with respect to which all but the first k coordinate functions of F' and G are
equal, i.e.

F(x)= fi(x) v+ ...+ fu(®) -7,
and

G(x) = gi(x) -+ 4 gn(x) - I,
with f;(z) # g;j(x) for all1 < j <k and fi(x) = g;(z) for allk +1 <i <n.

Note that 1-switching reduces to a switching defined above. Clearly, for any two different
mappings I’ and G there is an integer 1 < k£ < n such that F'is a k-switching of G. Moreover,
if 'is a k-switching of GG, then also G is a k-switching of F'.

Remark 1: Let 1 < k < k' < n. If the mapping F : Fpn — Fyn is a k-switching of
G : Fpn — Fpn, then there is an Fy-basis of F g with respect to which exactly k' coordinate
functions of F' and G differ. Indeed, let

k

F() Z %‘i‘zaz %7

i=1 i=k+1

and

k
Zgz )i + Z ai() i,
i= i=k+1
with respect to an ¥ -basis (71, ..., vn) and fi(z) # gi(x) for all1 < i < k. Then with respect
to the F ,-basis
k,/

(’.)/17 sy V=1, Z"Yja y V41, - - - 777’/,)7
i=k
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the coordinate functions of F' and G are as follows:

Zfz %‘i‘fk (ZVJ) + Z az %+ Z az %7

i=k+1 i=k/+1

and

Zgz )i + gr( (Z%)Jr > (ai(z ()7 + i ai(z)y

i=k+1 i=k'+1
In the following for a subset S C Fy» we use (S) to denote the Fy-subspace spanned by
S.

Theorem 1: Let 1 < k < n and F,G : Fjpn — Fpn. Then the following statements are
equivalent:

(1) F is a k-switching of G.

(ii) The image set of the mapping F' — G : x — F(x) — G(x) spans a k-dimensional vector
space over F,.

Proof. Let F:F;n — Fyn be a k-switching of G : Fyn — Fyn. Then there is an F-basis
(71,--+,7n) of F;» such that

F(z) = fi( %+Zaz )%,

i=1 i=k+1

and

Zgz )i + Z a;(z)yi,

i=k+1
where f;(x) # gi(x) for all 1 < i < k. Hence

F(z) = G(x) = > _(fi(x) = gi(x))n,

=1

showing that the dimension [ of (Image(F — G)) is less or equal to k. Now let (d1,...,d;)
be a basis for (Image(F — G)), and (01,...,0¢,...0,) a basis for Fyn. Let hj,u; : Fgn — F,
be such that

F(z)—G(x) = ;hi(x)é

and

Q
€
I
i

Then
F(z) = (ui(@) + hi(x)6; + > u(x)od
i=1 i=l+1
and thus k£ < ¢ by the definition of k-switching, completing the proof. B

Proposition 2: Let 1 < k < n and F : Fgpn — Fgu be a k-switching of G : Fgn — Fn
Then F and G have exactly ¢"~* — 1 equal component functions over F,.
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Proof. Let a € Fyn,a # 0. Then Trgn/q(aF(x)) = Tren/q(aG(x)) holds if and only if
Tronjq(a(F(x) — G(x))) is the constant zero function, or, the equivalent, image set of the
mapping F' — G is contained in the hyperplane H, = {y € Fg» : Trgn/0(ay) = 0}. Note
that Image(F — G) C H,, if and only if the linear span (Image(F — G)) is a subspace of
H,. By Theorem 1 the dimension of (Image(F — G)) is k. Hence, there are qnq__kl_ L different
hyperplanes containing (Image(F — G)). To complete the proof it remains to recall that

Ho = Hy if and only if o/ = o - v with a non-zerow € F,. H

3.  k-Switching of the Identity Mapping

In this section we consider bijective k-switching of the identity mapping. As the next obser-
vation shows the study of k-switching of an arbitrary permutation on F,» can be reduced to
one of the identity mappings. Let F': Fyn — Fn be a k-switching of G : Fyn — Fn, and
either I or G' be a permutation on F». Without loss of generality, say F'is a permutation
and denote its inverse mapping by F~!. Then

k

G(z) = F(z) +>_ fi(z) - %, (1)

=0

with respect to some basis (71, ...,7,). Note that (1) holds if and only if
k
Go F () ::c—l—ZfioF_l(x) Vi,
i=0

that is when G o F~! is a k-switching of the identity mapping. Hence, understanding of
the behaviour of k-switching of the identity mapping is an important step for the general
problem.

The remaining part of this section is devoted to a class of permutations obtained by
k-switching using the so-called functions with a linear translator. Our results generalize
several constructions of permutations given in [1, 3, 5, 7].

A non-zero element o € F» is called an a-linear translator (or a-linear structure, cf. [3])
for the mapping f : Fpn — F, if

f(z +ua) — f(z) = ua, (2)

for all z € Fyn,u € Fy and some fixed a € F,,.
The following theorem from [3] allows to construct functions with linear translators ex-
plicitly.

Theorem 2: Let G : Fypn — Fyn and f(x) = Trgn)o(G(x)). Then f has a linear translator
if and only if there is a non-bijective F -linear mapping L : Fjn — Fyn such that

f(@) =Trepng(G(x)) = Trynso(H o L(z) + Bz),

for some H : Fgn — Fyn and B € Fyn. In this case, any element from the kernel of L is a
linear translator for f.
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Theorem 3: Let 1 < k < n, A\, o,---, Ay € Fgn be linearly independent over F, and
fi : Fgp — Fy, j =1,..., k. Further, suppose \; is a b;;-linear translator for f;, where
i,7€{1,2,---,k}. Set

1+b11 b2 T b1
b 1+0b e b
B 2,1 2,2 . 2,k ’
bi1 R U

and let F': Fgn — Fyn be defined as
F(z) =2+ Mfi(x) + Aafo(@) + -+ + M fio(@).
Then F(x) = F(y) for some x,y € Fyn if and only if
T =1y+ Aay + Aas + ...+ Mpay,

3]
and : € F," belongs to the kernel of B. In particular, the mapping F' is a ¢"~"-to-1

Ak
on Fyn where r is the rank of the matriz B.

Proof. Let z,y € Fyn be such that F'(z) = F(y). Then, by the definition of F

r+ A fi(z) + Xafo(z) + -+ AN fi(@) =y + M fiy) + Ao foly) + -+ N fi(v),

and thus
$:y+)\1a1+)\2a2+...+)\kak,

for some elements a; € F,. Observe, that when a; € F, then

k k k k
F(y—l-Z)\iai) = y—i—Z)\iai—FZ)\jfj(y—i—Z)\iai)
=1 i=1 j=1 i=1
k k k
= Y+ Nai+ )Y N (fj(y) +> bj,iai>
i=1 j=1 i=1

k k k k
- y+z)\J fj(y) +Z)\zaz+z)\j (Zb”az>
Jj=1 =1 j=1 i=1

i i=Li#j

k k
= Fy)+)_N\ ((bj,j +1)a;+ > bj,iai) :
=1

To complete the proof it remains to note that the linear independence of A; implies
k k
F(y) -+ Z)\J (ijj -+ 1)aj + Z ijiai = F(y),
i#ji=1

if and only if all coefficients

k
(bjj 4+ Va;+ Y bjia; =0,

i#7,1=1
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ai
or equivalently if : is in the kernel of the matrix B. W
ay
Theorem 1 reduces to Theorem 8 from [5] when k = 1. For k = 2,3, it extends Theorem
10 from [5] and Theorem 1, 2 from [7] considerably.

Remark 2: Let (vi,...,7) be linear independent over ¥, and fi(x), ..., fu(x) non-zero
functions from Fyn into Fy. Suppose the k-switching of the identity mapping

k
v+ fi@),
=1
is a permutation on F . Note that in this case the (k — 1)-switching
k-1
v+ fi(@),
=1

must not be a permutation on Fn. This follows easily from Theorem 3. Indeed, there are
non-singular matrices over ¥, whose leading principal (n — 1) x (n — 1) minor is 0.

Corollary 1: With the notations of Theorem 3, the mapping F' is bijective on F g if and
only if the matrix B has a full rank. Let B! be the inverses matriz of B. Define the
functions h; : Fgpn = Fy, 5=1,...,k by

ha(z) fi(x)
: .= B71. :
hi.() fr(2)
Then the inverse mapping of F(x) is given by
k
F_1($) =T - Z)‘th($)
j=1

Proof. Let B; be the jth row in the matrix B. The calculations in the proof of Theorem
3 show that

k k k hi ()
F (x_,Z)‘jhj(iﬂ)) =+ A filx) =Y NB;- :
j=1 j=1 7j=1 hk(l')
k k fi(z)
= o+ N fl@) =D NB BT |
=1 =1 fu(2)
= z+ Zl Aj fi(z) — Zl Aifi(@)

= .

|

The inverse mapping of the permutation F' obtained in Corollary 1 is a k-switching of
the identity mapping as well. The next proposition shows that this property holds for all
permutations obtained via switching from the identity mapping.
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Proposition 3: If a permutation F' : Fpn — Fyn is a k-switching of the identity mapping
of Fgn, then its inverse is a k-switching of the identity mapping as well.

Proof.  Let (71,...,7%) be linear independent over F, and fi(z), ..., fu(z) : Fpn — F,
be non-zero functions. Further suppose that the mapping

k

F(z) =2+ fi(z)v,

=1

is a permutation of Fy». If F~! is the inverse mapping of F, then

v =FoF @)= F () + Y(f;0 F ).

Thus

implying the result. W
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Jdtpowynn nupumtinh ypw wpnwywnmytipnmiGtnh A-thnfuwpynmdGiph dwuhG
U. EynjwG, G-. Wnmptnjyul L U. Yyniptinjwa
Udthnthnid

OnfuwpynuibGtipn Yhpwnynd 66 Jtpobpu nyyu wmbuwo Ytpowynp nwpwmbph Ypw
Jnipwhwunmly wpnmwwywntpnudGiph junmgdwlp Ghpgwd wfuwwmwlp Gtpmud: Uu
wpfuwwnwlpmy pnhwipwgynid b thnfuwpyiwlG hwuwgnipyniGp dhGsk & -thnfuwnpyny,
npntn < £ < n , hywbu Gl Gipyuwjugdmd GG A-hnfuwpynudGiph pGnhwGnip
hwnynipynGGtn L Gupuwgpymd £ A-hnfuwpymiGiph dhongny wmbnuthnjunipjniGGtnp
Jwnnigiwl dbpny:

O k-oO0MeHax oToOpa’keHulM Ha KOHEUYHEBIX IIOAEM
M. OBosn, I'. Kiopersu u M. Kropersu
AnHoTanuys
KoHcTpykiysi oOMeHa WMCIOAB3YeTCd B HECKOABKMX HEeAAaBHMX paboTax IIo
MMOCTPOEHUIO Clelm(puiecKuX OTOOpPa>keHWM Ha KOHEYHBIX MOAeM. B 3Tou cTaThbe
noHsATue o0 obMeHe 0000I1IeHO A0 k-oOMeHa ¢ < k < n . TakKe IIpeACTaBAEHBI

HEKOTOphle OOIIhe CBOMCTBA k-OOMeHa M ONMCAaH METOA MOAYUYEHUs IIepecTaHOBOK C
HCIOAB30BaHMeM k-oOMeHa.



