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Th,,quegtionofnmryandauﬁdentwndjﬁomforthamdstanmofasimplshypa.
graph with a given degree sequence is a long-standing open problem. We investigate v, the
set. of all degree sequences of simple hypergraphs on [n] = {1,2, -+, n} having m edges. In
wimmmﬂ.mhdeﬁwbymwpm,mndnﬁngdmuuﬁum
degree sequences. Ma.maﬁofuppedmmmmmpmanidmilnamhd
mhwmmumbundhﬂhemplmur%,Mmmplm,wﬂchdom
correspond to any degree sequence of simple :

Wﬂhap&({u},b’),wmw={1,2,---,n}isitnwrteu:aetand£,t.hcmof
edges, is a collection of subsets. of [n]. l:{ypﬂgmphisaimpleiﬁthasnomﬂﬁedgu. The de-
wd,of;mmiafﬂhhhenumbuofedwinf:mhmingi,mcld(ﬂ)=(f',,.---.[\)iu
the degree sequence of hypergraph 7. The hypergraph degree sequence problem - existence
of.dmpl.hypergmphwiﬂ:the;imdegrmuqum-halmg-mndingupmpmum,ﬁmt
stated in [2]. We bring some combinatorial counterparts of the problem. In terms of (0,1)-
matrices: Lheinddmmmahixof?iisa(ﬂ,l}mhix.withmlummprumﬁngthemﬁm
and rows representing the edges, Suhnetsoffn]midmﬂﬁedwith(ﬂ.l)—seqummoflangth
nmmthei-thoompomcquds‘l’.ifandmhrifthei-:helemantof[n]ialncluddin
the subset. Thus the degree sequence problem is reduced to the existence of (0, 1)-matrices
with given number of 1s in its columns (column sums) and with no repeated rows. The class
ur(o,l)-mm-imnndursimﬂucondiﬁom{gimmmmnandmmm)hasbematudiedby
m,whoobwnednmwmdm:ﬁdmwndiﬁomfortheadumuofa@mmim,
see [7]. In terms of the n-dimensional unit cube: consider the power set of [n] and its partial
order by inclusion. The(O.I)ﬂdhgofmbwhmmthapmsetintoﬁ“.theutofw-
tices of the n-dimensional unit cube: E" = {(zy,+-+,2)/2; € {0,1},i =1,---,n}. In this
way, the hypergraph degree sequence problem is equivalent to the existence of vertex sets
in E™ with given sizes of their partitions according to variables z;. In this formulation, the
question arises out of the discrete isoperimetric problem for E™ [1], where some estimations
mbmpmmmdmdforqmﬁhﬁwﬁummufpuﬁdmofubﬁmrymube
subsets, :
Thghyp«gmphdegrmsuqumpmblamhinmﬂmbymdwthmmdmwm-
plementary results have been obtained but the main problem is still open. In particu-
lar, the polytope of degree sequences of simple uniform hypergraphs on the vertex set
[n] = {1,2,:+-,n} is investigated in [3] and obtained some partial information. Several
necessary and one sufficient conditions are obtained in [4] for existence of a simple 3-uniform
hypergraph with the given degree sequence. It is shown in [6] that any two 3-uniform hyper-
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i uence can be into each other using a seq
ylphﬁm::rthemet:g:m o aisofal = -
= em[n]h,\mm,dgu.cmﬂderwunmm?f.mmm'h
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N b.) if and only if a; < b for all i and the rank of an e
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the set of all upper degree sequences: |
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desrusaquenueofaimplatwpersnpha-
2 def A1, and hence whole set ¥m, it is sufficient to find

Thus, for defining ¥m 0
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