On a Property of the n-dimensional Cube Rafayel Kamalian¹, Arpine Khachatryan² ¹ Institute for Informatics and Automation Problems, National Academy of Sciences of the Republic of Armenia, 0014, Armenia, email: rrkamalian@yahoo.com ² Ijevan Branch of Yerevan State University, 4001, Armenia, email: khachatryanarpine@gmail.com We show that in any subset of vertices of the n-dimensional cube which contains at least $2^{n-1}+1$ vertices ($n \ge 4$), there are four vertices that induce a claw, or there are eight vertices that induce the cycle of length eight. We consider finite graphs G = (V, E) with vertex set V and edge set E. The graphs contain no multiple edges or loops. The n-dimensional cube is denoted by Q_n , and a claw is the complete bipartite graph $K_{1,3}$. Moreover, the vertex of a degree three in a claw is called a claw-center. Non-defined terms and concepts can be found in [1]. The main result of the paper is the following: **Theorem 1.** Let $n \geq 4$ and let $V' \subseteq V(Q_n)$. If $|V'| \geq 2^{n-1} + 1$, then at least one of the following two conditions holds: - (a) there are four vertices in V' that induce a claw; - (b) there are eight vertices in V' that induce a simple cycle. **Proof.** Our proof is by induction on n. Suppose that n=4. Clearly, without loss of generality, we can assume that |V'|=9. Consider the following partition of the vertices of Q_4 : $$V_1 = \{(0,\alpha_2,\alpha_3,\alpha_4): \alpha_i \in \{0,1\}, 2 \leq i \leq 4\}, V_2 = \{(1,\alpha_2,\alpha_3,\alpha_4): \alpha_i \in \{0,1\}, 2 \leq i \leq 4\}.$$ Clearly, the subgraphs of Q_4 induced by V_1 and V_2 are isomorphic to Q_3 . Define: $$V_1' = V_1 \cap V', V_2' = V_2 \cap V'.$$ We shall assume that $|V_1'| \ge |V_2'|$. We shall complete the proof of the base of induction by considering the following cases: Case 1: $|V'_1| = 8$ and $|V'_2| = 1$. Clearly, any vertex from V'_1 is a claw-center. Case 2: $|V_1'| = 7$ and $|V_2'| = 2$. It is not hard to see that V_1' contains a claw-center. Case 3: $|V_1''| = 6$ and $|V_2''| = 3$. Again, it is a matter of direct verification that V' contains a claw-center. Case 4: $|V_1'| = 5$ and $|V_2'| = 4$. Consider the subgraph G_1 of Q_4 induced by V_1' . Clearly, if G_1 contains a vertex of a degree three, then this vertex is a claw-center. Therefore, without ses of generality, we can assume that any vertex in G_1 has a degree at most two. It is not brard to see that this implies that G_1 contains no isolated vertex. Moreover, since $|V_1'| = 5$, se can conclude that G_1 is a connected graph, and, consequently, it is the path of length than. Now, let a_1, a_2, a_3 be the internal vertices of G_1 , and let b_1, b_2 be the end-vertices of G_1 . The learly, we can assume that neither of a_1, a_2, a_3 has a neighbour in V'_2 . Since $|V_2| = 8$ and $|V'_2| = 4$, we have that there are five possibilities for V'_2 . We invite the reader to check that four of these cases one can find a claw-center in V'_2 , and in the final case V' has a vertex us such that $V' \setminus \{z\}$ induces a simple cycle. Now, let us assume that the statement is true for n-1, and a subset V' of the vertices Q_n satisfies the inequality $|V'| \ge 2^{n-1} + 1$. Consider the following partition of the vertices Q_n : $$V_1 = \{(0, \alpha_2, ..., \alpha_n) : \alpha_i \in \{0, 1\}, 2 \le i \le n\}, V_2 = \{(1, \alpha_2, ..., \alpha_n) : \alpha_i \in \{0, 1\}, 2 \le i \le n\}.$$ callearly, the subgraphs of Q_n induced by V_1 and V_2 are isomorphic to Q_{n-1} . Moreover, it is jet hard to see that at least one of the following two inequalities is true: $|V_1 \cap V'| \ge 2^{n-2} + 1$ bind $|V_2 \cap V'| \ge 2^{n-2} + 1$. Thus the proof follows from the induction hypothesis. For the case of n=3 we have: reposition 1. Let $V' \subseteq V(Q_3)$ and let $|V'| \ge 6$. Then at least one of the following two monditions holds: - · there are four vertices in V' that induce a claw; - there are six vertices in V' that induce a simple cycle. cknowledgement. We would like to thank Zhora Nikoghosyan and Vahan Mkrtchyan for attention to this work. teferences West D.B. Introduction to Graph Theory. Prentice-Hall, New Jersey, 1996.