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cles in Digraphs with the Meyniel-type

On Long Cy
Conditions

Wednﬂmmmﬂthemdﬂhhmﬂiuwiththcﬁandudmindogww
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and d(z) +dy) 2 2n—1 for all pairs of non-adjacent vertices in D, then D is hamiltonian

(see also [1], 5] and [12). :
Thomassen [14] (for n = 2k+1) and Darbinyan [7] (for n = 2k) proved: If D is a digraph
onn25verﬁce!withminimumdegweazlmtn—l and with minimum semi-degree at
lmstn/?—l.thenbhhmﬂmnim(unlmmmmnicm). i
mmmmmdmm(uw&umwmmcmmw
10}, Woodall [15]) imposes & degree condition on all pairs of non-adjacent vertices (on all
vertices). Bang-Jensen, Gutin, Li, Guo and Yeo [2, 3] obtained sufficient conditions for
hmﬂwnisityofdjsmphﬂnwhid:dmeemndltiommuiﬂnsonlyformepa.lnofm.l
adjacent vertices. Namely, they proved the following theorems (in all three theorems D isa
mnsdisraphonrth'erﬁoes). 3
Theorem A [2]. If min{d(z),d(y)} 2 n — 1 and d(z) + d(y) > 2n — 1 for every pair of
non-adjacent vertices z, y with a common in-neighbour, then D is hamiltonian. ]
Theorem B [2]. If min{d*(z) + d-(y),d"(z) +d* ()} = n for every pair of non-adjacent
vertices z, y with a common out-neighbour or a common in-neighbour, then D is hamﬂ;om_f
Theorem C [3]. If min{d*(z) +d~(v).d"(z) + d*(y)} = n—1and d(x) +d(y) > 22 ~1
for every pair of non-adjacent vertices z, ¥ with a common out-neighbour or a common
i

in-neighbour, then D is hamiltonian.
1

Note that Theorem C generalizes Theorem B. In [9, 13, 6. 8] it was shown that if the
strong digraph D satisfies the condition of the theorem of Ghouila-Houri [10] (Woodall (1],
Meyniel [11], Thomassen and Darbinyan [14, 7]), then D is pancyclic (unless some axtremall
cases, which are characterized). It is not difficult to check that the digraphs K,
K;%m—{e}. where n is even and e is an arc of K m.uﬁafythaeondithnsoff I A
(B, C) and has no cycle of odd length. Moreover, i'pinThmrmnA (B, C) the digraph D has
no pair of non-adjacent vertices with a common in-neighbour and a common out—ndshhow,-.i
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L 1 D is a locally semicomplete digraph, and in [4], Bang-Jensen, Gutin and Volkmann
“wacterize those strong locally semicomplete digraphs which are not pancyelic.

' 2t is natural to set the following problem:

‘dblem. Characterize those digraphs which satisfy the conditions of Theorem A (B, C),
weare not pancyclic.

dTo investigate that a given digraph D is pancyclic, in [9, 13, 6, 8] it was proved the
utence of cycles of length |V(D)| —1 and |V(D)| — 2, and then using the constructions of
%e cycles it was proved that D is pancyclic with some exceptions.

e prove three results which provide some support for the above Problem.

morem 1. Let D be a strong digraph on n vertices with minimum semi-degree at least
[ If D satisfies the conditions of Theorem A, then either D contains a cycle of length n—1
! Is even and D is isomorphic to complete bipartite digraph K, ;5 or K55,/ — {e},
meinanucofx,‘:m.

worem 2. Let D be a strong digraph on n > 4 vertices, which is not directed cycle of
{ith n. If D satisfies the conditions of Theorem B, then either D contains a cycle of length
Ilorninemmdﬂimmnrpbicbommpletabipnrﬂtedismphrmn. :

Wote that Theorem 1 is sharp, in the sense that for all n > 6 there is a'strong digraph D
4 vertices which has minimum semi-degree one and satisfies the condition of Theorem 1,
acontain no cycle of length n — 1. To see this, it is sufficient to cofisider the digraph Dy
{:h was defined in [13] (see also [1].p.300). When m = n — 1, then D,,,, has minimum
~I-degree one and satisfies the conditions of Theorem 1 but has no cycle of length n — 1.

/Ne believe Theorem 2 can be generalized to the following

jijecture. Let D be a strong digraph on n > 4 vertices. If D satisfies the conditions of
corem C, then D contains a cycle of length n — 1 maybe except some digraphs which has
iimple” characterization.

dupport for the conjecture we prove the following.
:orem 3. Let D be a strong digraph with n > 2 vertices, which is not directed cycle. If
Atisfies the conditions of Theorem C, then D contains a cycle of lengthn —2 orn —1.
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