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Abstract
.

A classification £ © T T ... of arithmetical sets representable in

M Presburger’s system ([1-14]) and a classification A € A € A7 ©... of two-

: i kind are considered. It is proved that these classifications

are srictly monotone and complete. The operations w,M,=, O, = on two-

dimensional arithmetical sets ([SH7]) and the algebras ©° and ©, based on these
jons ([S are i The relati i

magd];]m}_ mm.n‘ : ons of these operations and algebras to

1. Introduction
lavestigations described in i continue i i i
W?‘mmm%mm i sty ?\:;b:(r? mn,,: motion ¢
arithmetical set expressible in this system) are defined as in [1]-{4]. The class I, ofall m‘:‘: .
xprssible in M Presburger’s system and is subclass & ofall two-dimensional ses belong a
are considered. Some subclasses A% and Zff of Ay and T, for n=0,2,.. are W
these classes actually coincide with the classes A, and I, considered in [6] and [8]). It will ILWH
that the union of all A coincides with Ay, the union of all £ coincides with I, , and the statemen
AI;!‘ c ﬁ‘:-.” s .ﬁ";? = al;on. E}?‘ c z:;nl\. z:b #* z;;rl) hold for any n The I:lffphn s H
(ISHTD covtaeing the cperstons U (bx) ~intersection),(composition, ourium:‘nmm '
(inversion) on n.rllhmehcl.lmmmm (precise definitions will be given below). | I
(5] that 4, coincides with the class of sets representable in the algebra ©°. Below it will blelu M:‘
the class A'J) coincides with the class of sets representable in the algebra ©, . It will also be W“
any class A7) is closed under the operations v,h,o,",mmclwm‘;‘.ﬂw ; :::d[ﬁ:
i |

' This work is supported by the grant 11-1b 189 of the Govemnment of the Republic of Armenia.
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2. Mathematical Structures

Let A be a non-empty set. The n-th Cartesian degree of A, i.c. the set of all n-tuples (x,,x,,...x.),
where x, € A, will be denoted, as usually, by A” (we admit that A'is A).If B A" thenian n-
dimensional predicate p for A (ie., the predicate on A") such that plx,x;,...,x,) is true if and only
g(,"x,,_,,_;,)eﬂ,wﬂlhﬂdlmmMmmB.MMmHMth
B is the set of truth for p . 2

The set of all non-negative integers {0,1,2,...} will be denoted by N . Any n-dimensional predicate
for N (i.c.a predicate on N*) will be called a 7 -dimensional arithmetical predicate, and the st of trith
for such a predicate will be called 8 n -dimensional arithmetical set.

lemﬁonofpmﬂaauﬁrndaonﬂnbuiaoﬂogiulcpuuim &, v, >, ~,~ V¥, 3, aswell
.miliuymﬁommﬁﬂlil.inmﬁwlu,ﬂzmﬁmufmm,mduﬂmﬂuh[!]mdﬂ](t:t

ional symbols,

dimensional predicate for M (correspondingly, some k -dimensional function for M , i.e. a mapping of
M" into M ), and (2) assigns some element of M to each symbol of constant belonging to I". We say
that a predicate formula F (correspondingly, a term 1) is a formula (correspondingly, & term) n a
ﬁmrﬁaﬂpwuumhhﬂmﬁmmmsymbﬂsofminF
(comespondingly, all functional symbolsmdallaymbolsofmint)belongm rfvYisa
m(hwinsﬁlemﬁmM)inaﬁmerﬂammymdimhrmth in T
(correspondingly, any term £ in T") having no free variables except X15%3,--- X3 defines in an obvious
way some k-dimensional predicate p for M (correspondingly, some k-dimensional finction f* for
M),Suﬁpdiﬁa(wmﬂhdhﬁmﬁim)uﬂlheaﬂednpﬂm(wmdhﬂy.mm]
expressed (or represented) by the formula F (correspondingly, by the term t) in ¥ . The set of truth for
pwﬂlhuﬂdﬁllﬁlmﬂnuﬁmd(arwumoﬂbyﬂnfmFIn‘!'.WeahlIuy
that a set A M" is expressible in the structure W if it is expressed by some formula F in the
ﬁmofw.wmwof“ﬁrmﬂahﬁnsmohm‘P'w"mmintlnligmtnmof
a structure '¥' * we shall say in short “formula in ¥ ”, “term in ¥ ™,

We consider (c£.[4]) the following structures having the universe N (where S is interpreted as the
function S(x)=x+1, the symbols =,<+,0 are interpreted in a usual way). By N, we denote the
structure (N,=,0,5,<.+) (it will be called below “M.Presburger’s structure”). By N, we denote the
structure (N,=,0,5,<). (Notctl'-lﬂnumhmmmidﬂudinm;ﬁnmmﬂ N, is denoted in
[41 by N ). The classes of sets expressible in N,, and N, will be denoted correspondingly by Z,, and
Z, (this definition of X, is equivalent to the definition given above — see, for example; [2], [4]). The
class of two-dimensional sets belonging to X, (comespondingly, X,) will be denoted by
A, (correspondingly, A, ). The classes X, and X, can be generated by some complete deductive
syﬂmoflhmlniﬂ:mﬁcbam’bodin{!].w](wﬁslso[ﬂ).Wednl]dmmﬁuededmﬁvesym
correspondingly by Ded), and Ded), . Formulas F* and G (correspondingly terms ¢ and r) are said to
be Ded), -equivalent or Ded, -equivalent if the formula (F — G)& (G —» F) (comespondingly,
{=r)is deducible in Ded), or Ded, . We shall usually consider formulas and terms in N, or N, up

to their Ded), - or Ded, -equivalence.
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Below the term S(S(..S(r)...n. where [ is a term, n_:d the "“.“H seu w' ko e
denoted by S* (1) The term S*(0) “'illbedcndﬂib)'*-lnpumﬂt.Su).,,-ouu I
3. Algebras of Arithmetical Sets . 1
i - ~ o-dimensional an d &

iti omu:opumm'u.n. . 0, ontwod m_ metical set (
mfﬁzfmﬂmkﬁrdhamﬂwmmﬁm a, 0, Ve by%
. T ks . g defined :
(l)if(:.y)eA.(y.:)EBdm(x.. - ;

(Zlif(x‘yJEA.(x.:]eB dmen(.t.y+:)eAOB; ;
i y , then x)ed’. )
33.‘232;&.{;,., g:’ and ©, ofmmumlumﬁml,g:msinm 1 ot
Gois,namdby&wopemimu. n,e, o.. et by i
R={(xy)|y=x+land 0 ={(x»)|x<}; the algebra ©, is generated by the .:
r'\u_"uﬂb}-ﬁetﬂichR.Q-ll'ﬂz={($.)’)|l’=0].“’ewm.mi' .
np.rmdinﬂllﬂﬂhe"ore, if it can be obtained from the basic elements of the algebra by :

| |

4. Classes A% and i

Now let us define the classes A% and T for n=012,.. The following lemmas are proved iﬂlu

141,15 (in socme oter terna e thet the expression (¢ = r)(Mod)n Lemsh 4 {ehers £ smeif ar
w is a posiive natural constant) denotes the formuls

terms in e : |
Sl A Rma)Y (Pa 3k g 0)), Whers the yishle: 2t ot Rebii S and r

and is repeated w times in any part of the disjunction. ~
Lemma 4.1 Any ferm in Ny &s Ded,;-equivalent to some term hoving the M
AX, +NyXy ot MXy + 7 where any expression n,x, denotes the ferm (X, + X, +...+X,) in whicl
the variable x, is repeated n, times, and q is a non-negative integer constant. Any formula in N,‘.i
Mﬂwﬂwmﬁmﬂa which can be obtained by & andV from subformuilas Mﬂq“
form (t<r) or (t= r)(Modw), where t and r are lerms, W is a positive integer consiani. (
Below we shall use a special form of formulas considered in Lemma 4.1. We say that a
(t<r) or (¢ = r)(Modw) having the form described in Lemma 4.1 has a reduced form (cf. [8]) if
satisfies the following conditions: (1) no variable is included simultancously in ¢ and r; (2) either ¢ orr
(or,pmibly.hdlﬂfﬁm)doumteominlm @, where g # 0. It is easy to see that for any
(t<r) or (t=r)Modw) having the form described in Lemma 4.1 there exists a formula which §
Dzd,,-equi\mlmwﬂ:ementionedfomm:lrdhuaredmed form. '
Lemma 4.2. Any term in N, has the form S* (x) or §'(0), where x is a variable. Arwfarmﬁi
N, is Ded, -equivalent 1o some formula which can be obtained by & and from subformulas havin
the form (t <r), where t and r are terms.
Lemma 4.3. The class A,, coincides with the class of two-dimensional arithmeticol sets which cas
be represented by formulas in N, obtained by & and’ from formulas having the form by <
7 < ket ly, ka7 <ly, ke <ly+ 7, ke<ly, ke <, i < ke (or a form obiained from thase b
replacing x by y and y byx), where k, | are posilive integer constanis, m I:am-nmmmﬁ

]
l
i
|
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suasiant, or the form (x = I)(Modw), (y = [)Y(Modw), where | is a non-negative integer constant, w
“\ 1 positive (nteger constant.
' Note. The expressions having the form (¢ =r) may be added to the list of expressions (f <r) and
s r)(Modiw) in the formulation of Lemma 4.1; they may be added to the list of expressions (f <7) in
rﬂ:mmmamllmmwbyﬂﬁm“qﬁﬂm to Lemma 4.1 and
wmma 42, comespondingly. Indeed, the formula (1=r) is Ded, -equivalent to
s<r+1&r <t+1); this formula is Ded, -equivalent to (¢ < S(r) & r < S(t)).
' Let us consider (cf. [6], [8]) the monotone sequence p, consisting of all prime numbers: p, =2,
« =3, p, =5, .. The class I1,, where n2 0 is defined as the class of all positive natural numbers
tlzh that all their prime divisors belong to the set {p,, p,...., p,_,}. For example, if n=0 then the set
tlas Pys-+-» Py} 18 admitted to be empty, and the class IT, contains only the number 1. The class IT,
dntains all the numbers having the form 2", where n2 0, etc. Obviously, I1, < I, for any 2. The
zass A of two-dimensional arithmetical sets is defined as the class of sets which can be expressed by
amulas in &), obtained by & andV from subformulas having one of the forms (1) kx+ by <77,
s<ke+ly, kx+m<ly, kx<ly+m, kx<ly, kx<i, i < kx (or a form obtained from those by
iblacing x by y and y byx), where kell,, /eI, or (2) the form (:-f)(ModW}.
++m [ )(Modw) , where w e IT, (cf. [6]).

The class Zj) of arithmetical sets is defined as the class of sets which can be represented by
nmulas in N, having the form described in Lemma 4.1 and satisfying the following conditions: all
loformulas (f <r) and (f = r)}(Modw) have a reduced form, and all the coefficients n,n,,...,n in
' 1 representations of ¢ and r in the form n,x, + mx, +...+ n,x, + 7, as well as the numbers w in the

I Main Theorems

»e following theorems will be considered below. For the reader’s convenience we recall some thearems
nved earlier in [5] and [7].
Theorem 1. AY =A, NEY forany ne N,
Theorem 2. A, coincides with the class of sets inductively represeniable in the algebra ©°.
Theorem 3. A, m&:wmm:buq’nkma‘nbwbkhdndg:h 9,.

Theorem 4. A, = UA,.:,,::U:"’ AR c AP 0 c X0 forany ne N.

Theorem 5, A‘;’*A‘;‘”.E‘;’*Eﬁ,‘*"ﬁrm neN.

Theorem 6. Any class A% is closed under the operations \J, N, , " but it is not closed under the
eration 0 .

Theorem 7, &?mmwﬂhdauduanmﬂﬂnﬂna@m 9,.

Theorems 2 and 3 were proved earlier: Theorem 2 - in [5], Theorem 3 - in [7].
Theorems 4 — 7 were formulated (without proofs) in [6] and [8].
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o ofmunsmmmmdmmumlmymmr_u < some lemmas
Fcrl‘-‘lep'?‘,'f : ‘mﬁcalnuhmtheutd lsmdmbemmdb-mu,:f'
ive i itive i h such that for any natural ]
+f there exists non-pegative integer g and a positive Integer it for any 28 the
mmmxed -:cqﬂi"""’”" x+heA. In this case we say that ’lﬁ‘awo"A‘".‘ ﬁ_
Mmcwimg=ﬁ then we say that A is purely periodic. 1f A is eventually periodic wigy
periuih and no positive i, < islpu‘idofd.tlﬂwaythtb is a minimal period of 4 ¥
um's.l.b‘/lc:\' “mmuﬁ,-p;ﬂodicwilﬁm!MlMptﬂlﬂh.ﬂ!naﬂﬂnm‘#
mmmm.umwnammdmbm =
Lemma 62. If AcNand BCN are eventually periodic with the periods I and b,?‘“
MAUBwdnﬂmmmdbplﬂmwiﬂdwpedadﬁ‘},r g

: i ing the corresponding definitions

The ﬁaf&mlemmn_mobmmwﬂ)'mlm_
?::tmu(cﬁﬂ],nmszﬂdm;l:ﬁ belongs to £ if and only if it is i

prdon‘lcwilhﬂxp:dadk!ov@qgmﬂ,. : !
Proof. If AcZ} lhen(seeﬂtdeﬁniﬁmot'!:}?) 4 unbempmemdbylfmuhinﬂ.uj

mmumgleﬁuminhle xnnd_swhmitcanboobu.imd by & and Vv ﬁ“mw.
the form (kx < D), (7 <kx). (x = T)(Modw) ,where all the numbers & and wbelong to 17, i
But the sets represented by formulas having the forms (ke <) or (T < kx) are either finite or haye
finite complements; so they are eventually periodic with the period 1. Every set represcnted by "
formula having the form (x =/)(Modw) is purely periodic with the period w. So we m|w‘..f'
Lemma 6.2) that A nsevmnnllypuiodi:\viﬂiﬂwpuiodbelmsingtoﬂ..
Now letA be eventually periodic with the period /i€ /7, Let x& A is equivaleet x2S ETR
when xag,Wimlnrgpmdi:ymmmM £ > 0; let us denote the number g | by
k. Let Ky ksunrk, be all natural numbers less than g and belonging 104, £, 3....1, be all et
numbers greater than k& (ie.> g) and less than g+ h. Then the set A is represented by the formuly
which is the disjunction of subformulas ‘x=£kfor 1<isSt and of subformulas.
((F <x) & ((x =T, XModh))) for 1S jSu. It is easy to see that this formula represents the set 4.
Hence A€ E4'. This completes the proof. i
Nete. If & onedimensional set A has a period belonging to /7, then s minimal period alsa.
belongs to /7, (see Lemma 6.1). So in the formulation of Lemma 6.3 we may say “minimal period”™
instead of “period”.
Lemma 6.4, Jf a two-dimensional arithmetical predicate p(x,y) is the representing predicate fora
set Ae A%, then Ixp(x, ) and Iyp(x,y) are representing predicates for some one-dimensional sets

belonging to T} "

.
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Proof. Let us prove the statement of Lemma for 3yp(x, ) ; the proof for 3xp(x,y) is obtained

m'm ﬂ;,y)amw-mmummwhmmmnfu
mbr;;,jzwﬂluwtgmlm fmmof&ni:desuipﬁu;ﬂ:isfummbenhﬁmdby
including of subtraction symbol in the language of terms (cf. [4]). Namely we shall consider the
expressions having the form £ nx, +n,x, *..2mx, £7, where the expressions n,x, are interpreted
uhhmmﬂu_ﬁ:mﬂmoflmi.l.mﬁu}y,mym:(:<r),w}uulndr are

jons of such kind, can be transformed to the formula without the symbol of subtraction (for
example, 2% — 3y < —7 can be transformed to 2x+7 <3y). Of course, some formules of the mentioned
Hndmiduﬁﬂllymuiduﬁnﬂyfllu(_ﬁ!mrﬂe. 2x+3y <5 is identically false). In this case
such formulas are Ded , -equivalentto 0<1 or 0 <0

If the symbol of subtraction is used, then the general form of subformulas (¢ <r)of the formula
representing the predicate p(x,y) can be given by the expression kx + Iy < &7, where k,l.m are
WM,MWUO).MH,HMMG&Mgm m,.

m,luuam]yﬂnﬁwiﬂmfurdimﬁnﬁmofm-nﬁﬂnmwinmmhformth
mmmBJMz.y).WaMmMﬂnmofmﬁrhﬁrmuhmbyﬂﬁs
algorithm, belongs to f}’.

Um»mdﬂneﬁmylﬁiﬂlmmﬁmdmbdin[ﬂ.wmmmanF
representing p(x, ) to & formula F which can be obtained by & and v from subformulas of the
ﬁjmsmﬁndu:(l)mofﬂnndommaymmhdudedmﬁmm F ; (2) some
of them have the form
(64.1) WREF, &..&F, &G),
;,,whid,.u.F}lmreﬂaefclm(k,x-l-l,yf.E)w!uel,#O.]l,]el'.[_.k,an]k,[EH.;Ghasﬂle
form (y = [)(Modw) ,where w e T1,. The subformulas of F which do not contain 3y satisfy the
conditions noted in the definition of Z{’, so for the proof of Lemma it is sufficient to consider the
process of elimination of Jy from the formulas having the form (6.4.1).

mfdlmnin;ﬂepofdgoﬁﬂmd&m‘bedinﬂ]kwﬂuau“nmﬂhminﬁmof
coefficients at y”. Namely we consider the product |/,/,..J,| =T and the numbers I, 1;,...,I such that
T=|,|f, 1<i<r.The formula (6.4.1) can be transformed o the form
(642) YFRE&EF&..&F &G,
where any Fis (kfjx+1l'y<ml}), G'is (Ty = TI)\(ModTw). This formula is further transformed
(by introducing a new variable z = Ty ) to the form
(64.3) B(REF&..& F7&G" & (2= 0)(ModT)),
where F" is (kljx+z<ml), when I,>0 and is (kix—z<m],), when |, <0; G" is
(z = TT)(ModTw) . Obviously, any coefficient k' either is equal to 0, or satisfies the condition:
|x,x,‘|en_;unm T and Tw belong to IT,. Any formula F}" can be represented in the form
s<mf;~kix when |>Omd in the form k/x-m] <z when |<0.1f F' is
:.:;:I’:'-—k,l,': then the expression ;E—-t,!'x will be denoted below by U, (it is an upper bound
for 2 );if F"is kJ}x~mI; <z then the expression k| x — m,I; will be denoted below by L, (it




. described in [4] we also add the number b
; MMFw:)FoLW‘mBWﬂ"H"M B =1)
Ladlmwmﬁwmuwﬂmmmum:mh
negative, L€ z>-1. . el 3 ksl
denote by uwmmwmmuplwfmddﬂ_ contained in the considered form,
Letus “#“M.n.w.mhbwﬁmlﬂﬂﬂmumw:m
’.‘ l md‘ : ; o
(644) wﬁ'& F&.&F& G" & (= = 0)(MedT)
hwﬂ\uﬁdmﬂfdhﬁﬂwmmi‘wﬁxmﬂhm L+3. whe
1< g < M Sothe formuld (5.4_3}iscquﬂmwﬂfdmmoffwmulnmmmd
obuimdbydnmmiimormw L +gq,for = in (6.4.4). The disjunction of formuls
mwmwbumﬂ:orumﬂﬂmm.mm“ﬁ.
such substitution obtains the form L, <L, +4. ¢ 1,+3<U, , but any such formula contains a sing
W:.mﬂhm@ﬂﬂmmmﬂlmmoﬂhfmﬂx<ﬁ_E‘,.né‘
u«o.mwmﬁwmdmu:deﬁnﬁmofﬂcclm!!}:‘ are satisfied for these formula
Smmﬂnmuluobuimdmc'or(:-oxuom by the substitution of L, +3., for = can
mﬂydﬂdmuﬁnmulunﬁsﬁwnmmdiﬁmﬂumMmormfw&‘m
b)'ﬂnmcmioundllguriﬂunbelorlpwz};'.misccﬂqﬂmhpmnt _
Lﬂmousidtrmo-dmawiﬂﬂl arithmetical sets D, ={(x.») |y = kx} for k=123, and

sctE-D,,Obvioml)'.‘Eeﬂ;‘.lwn:e E e Ay forany n. 1
Lemms 6.5. D, €AY ifand only if k & I1,. ?-
Proof Let 1 be a natural number such that ke Il,. Then D, is represented by the f ;_1

3

(y<h+T)a(h<,-+T).Hm= DisAT.
Now let 7 be a natural number such that D, € A% The representing predicate for the set 1),
J"h-mmmmmw Pll'-.l')-U-'linsLemmaﬁd\woomlwemﬂg”“m“
the predicate 3yp(x,y) belongs to £, But this set is {x] (x = 0)(Modk)}; it is a purely period
andiuminimlperiodisk.UsinsLemG.chcomludeMkeﬂ._mummhm
Prnul‘nl"rhenuns.l.etnbumtmlmmber.nzo.let P, be n-th prime number. Obvious

p.ell, . p.ell, Let k=p,. Using Lemma 65 we conclude that D, € A4, D, ¢
D, e$4™, D, e Ijj’. This completes the proof.

Lemma 6. 6. Let A and B be nwo-dimensional arithmetical sets, A€ Ay, Be Ay, X
AcBe A},

me.wmammcumnﬁnspmdimhr A and B by p(x,») "‘dl(x
correspondingly. Then the representing predicate for A Bwill be expressed by 3(p(x,2) & q(2,)
We shall prove that the set of truth for this predicate belongs toAY;. We shall use (as in the p -I
Lemma 6 4)the algorithm for elimination of quantifiers given in [4]. '

The predicates p(x, v) and g(x,¥) can be represented by formulas having the form od
the definition of A%’ . We shall apply the mentioned algorithm to the formula 3z(p(x,z) & g(z,»)). W

del'n_lrehl;hisfntmulubyf"‘

bol of subtraction i yun

LRGN & ‘°“"Wwwlwofmnmumwmmwumdi
;
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*  Similariy 1o the proof of Lemma 6.4 we can transform the formula 7 to a formula 7 which can be
Netained by & and v from subformules of the following two kinds- (1) some of them do not contain 3z
* d were included previously in F ; (2) some of them have the form
556.1) u(F &M &. &F)&(G &G, &..&G,)& ),
Hawhich: (1) every F, bas the form k.x+1,z < g, where k,, I,, g, are integers (possibly, negative or
L L0, [flem, , k=0cr |k|e,; (2) every G, bas the form c,z+d,y <h,where c,, d,,
aare integers (possibly, negative or 0), ¢, #0, ¢ |17, d, =Oor |d,|€ 77,; (3) J has the form
= = [)(Modw) ,where we IT,. The uniformiration of coefficients at z is implemented similarly to [4]
) H to the proof of Lemma 6.4. Namely, we consider the number .
T =1 cc;..c,],

4 the numbers [, L, [, ¢,c5,....c. such that T=k, T=I"'1I°:" 1<i<u, 1€j<v . The
mrmula (6.6.1) is transformed to the form
1562) B(F&F &..&F))& (G| &G, &..&G) & J"),
lwwhich: et
3 every F; bas the form klix+11jz < g ; (2) every G/, has the form cciz+dgiy<he,;
.1 J* has the form (Tx = TT)(Modw ).

Obviously, Tell,, every I ell,, evey c,ell,, Il =Tor I =-T, cc;=Tor

w2y =-T, ki =0 or /| € 11,, d )} =0 or 4 c]|e1,, 1<i<u, 1< j<v. The formula (6.6.2)
iurther transformed (by introducing a new variable z, = 7% ) to the formula
106.3) 35 (F&F&.. & F) & (G &G} &...8 G]) & J" & (z, = 0)(ModT)),
vwhich: o R
) every F;" has the form k['x+z, < g’ when I, > Oand the form klx—z, <gl" whenl,<0;
. every G} has the form x,+dlc;<;cE when ¢, >0 and the form —1'1*";'-';J“W when
»<0;
fi the formula J* is (z, = TTY Modw ) .

Now lower bounds L, and wpper bounds U, for z, are defined similarly to the proof of Lemma 6.4.
tmely, any lower bound L, lnld:efumk},'x-g_,lfordlg;y-m;wuppsbmmd U, has the
'm g/} ~ki\x or ki, ~d,c;y. Similarly to 4] and the proof of Lemma 6.4 we add the number (~1)

Ihe set of lower bounds; this additional lower bound reflects the condition z, > —1. Note the fact which
assential for further conclusions: no expression for the lower bound or the upper bound containis two
riables together, x and y.

By M we denote the least common multiple of modules included in the considered formula (in our
‘¢ M =Tw, hence M € II, ). Now, similarly to [4] and to the proof of Lemma 6.4, we can conclude
‘Lthe existence of some number z, satisfying the condition expressed by the formula
64) (RFE&F&.&F)&(G& G} &...& G}) & J" & (z, = 0 ModT)) _
quivalent to the following statement: this condition is satisfied for one of the numbers L, +7 , whete

is one of the lower bounds for z,, and 1< g < M . So, the formula (6.6.3) can be transformed to the
junction of formulas such that each of them is obtained from (6.6.4) by the substitution of somie
wression L, +7 for z,. The formula obtained by such a way is the result of the mentioned algorithm.
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formula which can be obtained by & and v
subformules having one of the form L, +3 <V, Le<L*T: (== EXModM), (r=TX
n-l_'ﬂu'(l.,lﬂl- . )wlh:llﬂm xu_y.lhnh
L’+q‘U'(L"L’+q. - .)umvﬂenl‘ o some m‘ : having one of the
r<i, W<x, y<m, WY 0<0, 0<T. If the variables contained in L, and U, (L, and L,
e e diflren, e e formula L, +3 <U, (L, <L, +7 comespondingly) i
ummﬁnhﬁummmmwm“"‘dﬂé‘i‘-&m
i climinat] r‘wﬁushqmvﬂeﬂwmmm“
A% This completes the proof. '
AR, BeAj, then using Lemma 4.3 we conclude that the
JUB, AnB, 4™ telong© &7 Using Lemma 6.6 we conclude that 4« B'e A7, On the
pand, let n be a natural number, n>0. If k=p,~1 then, cbviously, ke /1,, k+lell,
D.e&;'?.EeA'}'&’Cﬂ’-”mﬂDth&.Mmmw&?'mm“
m,,fmmtuhgﬂﬁc&ﬂmmﬂ(ﬂ'ﬁ' coincides with the class A, (see Theorem 3
Let A be a two-dimensional arithmetical set. 1f 4 belongs to A, then it can be represented (see Lemm:
42) by a formula F in N, which is obtained by & and v from formulas having the form (f <r)
where  and r have one of the forms §*(x). §'0), S7(0). But the terms §*(x) and §'(y) w,
Ded quivaent o x+F and y-+1, comespondingly. Using Lemma 4.3 we obain that A€ A} ;
Nowif A€ Ay mﬂnnbempmﬂd(mlhedeﬁniﬁmofﬁf,‘)hy:hmﬂlFth
by & and v ﬁamﬁummulwinsmofw X+Y<m,M<x+y, X+WM <Y, X<+,
;<y,:(ﬁ,ﬂcx(wammhwdﬁmmwmﬂmxb¥yIﬂdybyx}

” ”W“‘W

mdinﬂsd:ﬁrﬁ:bﬂﬁflh‘d“’
Proof of Theorem 6. If A€

But x.,,y..;ﬁigpgd"-qu.ivﬂentlnﬂlem g
(x-__ogy‘_ﬁ)v(;:T&y(m—l}v....v(xﬂm—lﬁy‘-ﬁ. i
similarly, m<x+y is Ded , -equivalent to the w

(x=0& <))V (x=T&M-1<Y)V.V (x=m&O< )V (@ <3).
me+ﬁ“ﬂy+ﬁmngxquhdmmS'(x)uﬂS'(y).mnwu@yw
Lemma 4.2 we complete the proof. R
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J'U. Mpkupnipgbiph hunfwlwpgnud ikphwymgynn kplsunh prlupubiuljumb
puqunippnitliibph npng hwbpwhwyjwljuh b npunfupobmljmb
hunnlmpmbhtp

U. L. Umitmiub

Uilthnthmu

Apouwplpnd B ZP CEP cEP .. nuubpp, npntg  hwgnprmijwbmpmbp
hggpmuf & U. Mphupnipgbph  hunfulupgnuf  bkphwpuging - plwpnbuluh
puqUmpnibibbph  quup  ((1H4) © AP cAPcAPc.. nmubpp, npnbg
awgnpyuiubmpmbh plngphnul k nfmb whgh bphyunh pmqtlmmmhhhnlt Ruiup:
UJupugmginud £ np bpjwd guumlmpgnufibpp Juhmn unbmant B b pho:
Hpunuploud bb phyunh plwpwtmlmh puqimpmbbbph qpu spegtws U, N, 0,
! qupdnnmupymblikpp ((5-7)) b wyy qnpénnmpymbbkph Ypw hnjus ©° b ©,
ambpwhwohybubpp  ([5H7]): Zlnmqmmjmyu bb  wyy  gopdnympmbbbkph b
awbpuhuzhubph tinjuhwpupbpnpmibtkpp bggws pounbupgnulbbph hin:



@ :mczmc_" aprdMeTHICCKIX MHOKECTR,
paccuaTpHBacTCS  KIBCCHURAIIY 2,,5 = F: ([;'].[4]), a  TmoRe

JloKa3MBACTCR MOAHOTA u_lclwl"‘ apuemeriaeckix MuoxecTsax ([SH7)), a v
v, N % 9 "'w'l ga omix onepamusx ([SMH7)).
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