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Abstract

Tbeeﬂmdmﬂ:msfwmdumgmdmnghmofmpmsﬂn
orthogonal wavelet-like transformation are presented. The experimental results show an
mmmmﬂmhrmof?ﬂ!kmmmbhwﬂlmmmpﬂm
algorithms.

Intradﬁcﬁon

Image resizing is meofﬂw_ﬁnpmm:opulﬁm.forinmhtheﬁeldofmediulinm
wrocessing, computer graphics, image database, efc. The problem may occur when the user needs
© display an image at different resolutions depending on the resolution of a display device [1].
We often need to perform the operations involving image resizing such as zoom in, zoom out
und crop operations on huge amount of images [2].

The aim of image resizing is to magnify or reduce the size of an image while preserving the
Jetails and visual quality of original image. Image resizing is reduced to the problem of
mierpolation. The interpolation of digital images is also used to change the image scanning from
une pixel grid to another, the correction of lens distortion, perspective shift, or rotation of image.

There are many interpolation algorithms. One of the simplest methods is the nearest
seighbor interpolation. The methods such as the bilinear and bicubic interpolations maintain a
setter image quality than the nearest neighbor interpolation when resizing is done to enlarge the
image. However, these methods are often not suitable for image reduction. Most of image
esizing algorithms are based on the principle of spatial interpolation and are not adapted to an
mage content. They may fail to preserve image details, especially during reduction [3].

It should be noticed that not all the image resizing techniques are expected to work well for
Il types of images, and different methods work well on different types of images. Therefore,
wven if one considers the same image, the results may vary significantly depending on the
aterpolation algorithm. Since, in general, any interpolation process is only an approximation, an
mage quality will deteriorate each time it is being interpolated. In this case, the result depends
trongly upon the image itself In many cases, it is advisable to use an adaptive image
oterpolation algorithm. The adaptive methods depend on the object interpolation. Moreover,
hey are changed during processing depending on sharpness of edges, smooth arcas and other
eatures of the processed image. Non-adaptive algorithms handle all parts of the image equally.

In [4] the synthesis of orthogonal wavelet-like transform is presented. In [4], [5] the image
umpmmmﬂgmlhmblsedonlhumfommdnm‘bedwhwhhnlhghwmprmonm
nd good perceptual quality. m[GIadmofmfnmsuwcllnmalwltbmﬁxmmsm
if the image with the use of these transformations is presented.
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3 daptiv orithms for Image Enll:_-gement
2. Non-adaptive Alg dentified with a rectangular or square matrix of values.

Itislmnwn:hﬂdisitalimag:mnybe_i e
ofﬁebﬁ;hmdiuphdtﬂuewcmlshmmm%nofﬂumumw
imaeimapullﬁmmuhoda
2.1 Nearest Neighbor Method ! 3
mmcmdapﬁvtdgodm_memp{mmcmodofwmhm
neighbor interpolation. For each point of mm'polmon.ﬂ:nalsomhnm(u replic '“l-ﬁw
vdueoflhemuighhnrpixd.Aumnlmh_equmdcolumm.ofmam“m o
mmwmof@mdmm@mqlgmof@qmmmmhw
hmmummdpﬁmmqmmammﬂmmgmm' .

2.2 Two-dimensiomal Spline Interpolation of Images
Bilinear interpolation

Bilinear spline is a two-dimensional generalization of 1D linear spline of the function of twe

variables defined on a rectangular grid [8].
Suppose we want 0 interpolate the value of the function f(x,y) at the point P(x,y)

belonging to the interior of the rectangle with vertices P, (x,3,), Pa(x.33). Pylxy,n)
Pn(leyi)- (xl “-";-)’1 ‘y:)' At mm- thcva.lueof f(xly) i" inlﬂwlncd linearly at ur
intermediate points 0,(5,31), G:(6.7,) (Figure 1), and then at the point P(x,y). Thus, the
function f(x, y) is calculated with the following formula:

Ll Uit -y
S(x) Sxm) N +f(x» )’;-J:. " (n

where
15y, ~ fG )2k [y, f =12
X=X Xy =X

The algorithm is characterized by its simplicity and speed. It should be noti :

disadvantages arc the low level of accura i nohccdl.?mh

Qoo : cy, non-smoothness of interpolated spline a
Bicubic spline. The use of bilinear splines often does not provi required quality
- * . : 2 2 u

obtained after image processing. 'lheduouuunmlycfﬂseduivnﬁmilm:nheoouﬁ:mdiﬁ

hmfaaon and influences the result. In such cases, it is desirable to use bicubic splines [10] '
continuous first and mixed second derivatives. To construct a bicubic spline the ot

values, its first derivatives as well as the value of the mixed second derivative at the nodes of
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sumesh are required. Similarly, as in the case of bilinear spline interpolation, one can first perform
tan interpolation along one  variable, and then, along another one.
gi'aj-'j'ureluhnwst.heresulnof‘t-ﬁmuhwmeofaputofﬁnm!.mwiﬂuizeﬂx&usingthe
“pearest neighbor algorithms, the methods of bilinear and bicubic splines.

b) c) d)
I Figure 1. Results after applying different interpolation methods: b) nearest neighbor, c) bilinear spline,
(td) bicubic splines.

Non-adaptive interpolation algorithms result in stair-wise boundaries, blurring and boundary
thalo.

The methods for the nearest neighbor and bilinear spline lead to a stair-wise effect on image
boundaries. These methods are a little susceptible to the boundary halo, and differ only by a
Idifferent balance between the stair-wise effect and blurring. The methods for Lanczos and
thicubic spline show a small level of stair-wise effect, but lead to significant blurring of the ii.'l::la'ge
' [10]-[12]. it

!3. Adaptive Algorithms for Image Magnification (resizing)

IThe most common adaptive algorithms are the following: the method of genuine fractals [13],

" PhotoZoom (standard), PhotoZoom (GUI), PhotoZoom (text), SmartEdge. The most commonly
tused fractal algorithms are genuine fractals. In general, they process an image analogous to the
files of vector graphics. Theoretically, the algorithm is zooming in an image without loss, but in
practice there are noises in the form of small-scale texture. In some cases, the results are not
better than that of bicubic interpolation [10].

To find the luminance value of the pixel being processed, the adaptive methods using the
algorithms for detection of boundaries take into account the pixel values of its surrounding area
‘with some appropriate weights, These algorithms depend on the neighborhood of a pixel. Their
Mlexibility allows to get sharper images with fewer defects compared to non-adaptive methods

[10]-{12]. These algorithms recover boundaries by using S-splines. They require more
‘processing time and usually are more expensive.
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4, Interpolation Method with the Use of Transformations
i i interpolation algorithm in a transform domais
Figmtzshowuhlockduymoﬁ:he. e i !

scheme uses the following
%Tmbhh\wwmmﬂmm-

Image Block spectum | o poT | VR L,
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5. The Proposed Image Interpolation Method Based on the New System of
Basis Functions _

Let
1 Lf in®2' ax,xe =1
', xef0.2 ], o .xeloz]. sin’ 2*ax, [ 2]
%(.r]- SOS- 12 ﬁ{x)' A [123 '.(S)I'"[x)- 3 _‘..[ﬂ L]]
0, X€ 5.1 ¥ CcOs” ax, X € i < 75|
n=2"+i, =012l S L Zncrad - _

Denote by Ty-NxN (N=2" ) a matrix obtained by uniform discretization and Gram
Schmidt orthogonalization of the first N basis functions (1). The plots of the first f
onhogonﬂbuisﬁmeﬁmuepremmdbdowonﬁgnrel

1 4 2 3
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Figure 3. Plots of the first five orthogonal basis functions.
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| [4]-16] the discrete orthogonal wavelet-like transforms for image compression and filtration
¢ deseribed in terms of the new obtsined transforms. Fhese algorithms have a high
smmpression ratio while providing a good visual quality. 2
e foflowing steps describe briefly the image interpolation process:
i Aﬁplyingznmfwm T, toblock M, we get its 2D spectrum S :
§5=T,-M-T,

wwhere M is the matrix of luminance valdes of the image block of size NxN, T, isthe
nansforn matrix , 7, is a matrix transposed o 7, : i
. Denote by S, a matrix consisting of the first nxn (n=2‘,m<k) elements of the upper left
comer of the 2D matrix §.
. Using 2D inverse transform 7, of dimension nxn to block S, we obtain the restored
image block M, of size nxn:

M, =T.-S,-T.
1 the casc of zooming in, in g2 we shall replace the matrix 5, by the following matrix:
. PR SR~ s
SI=[S Z:Ia
2.2

there S is the spectrum of the block M and Z is the zero matrix of size S .

The quality assessment has a subjective nature and, generally, it is done visually. However,
‘e bring also the numerical estimates which give some assessment of quality.

Supposc we have an image of M and its approximation M, of the size of nxm pixels.
“enote by

8 T MRS
MSE_nmeE‘.[MG'J) M, (i, /)], PSNR=10 _M__s.'.g_]

ASE determines an accuracy according to the mean-squared error. The larger is the PSNR
seak signal-to-noise ratio), the smaller is the error of approximation.

To assess the quality of image interpolation after zooming in by kxk times, we took every k-
column of the k-th row starting from the first row, then we have increased the image size and
»mpared it with the original one. That is, the PSNR value is considered here in this sense.

When zooming an image out, in order to estimate the error, the smallest image is zoomed in
3 to the size of the original one and is compared with the original image. Below in Figure 4 the
aage Barbara and its spectrum are presented.
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L
Barb Spectrum of Barbara
Figured. Y partofspectrum X part
Table 1. PSNR values of 2 times zoomed in images.
Method
Image/size det2 | nearest bilinear bicubic | lanczos3 trans | hear’
PSNR |
"~ Cameraman, 256 2201 | 2243 | 2391 2370 | 23.44 2498 24
Lena, 256 25.07 | 2446 | 2620 2594 | 2565 27.5 2447
Lena, 512 2949 | 2829 | 3021 3013 | 2994 33.13 2%
Barbara, 512 2201 | 2222 | 2338 2334 | 2285 23.96 2n
Table 2. PSNR values of 4 tunnamomed in images.
Image/size dc2 | nearest | M&L__lm__l
PSNR

Cameraman, 256 | _18.58 3,14 9.69 1924 18.98 20.67 .16
Lena, 256 203 9719|2142 2098 20.72 23,07 9.7¢
Lena, 512 233 22.70 24.47 24,05 23.78 27.15__| 2.
Barbara, 512 9.5 9.34 20.95 20.42 20.12 20.87 19.3¢
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Tabie 3. PSNR value of 2 Iimummm
Meroa
linages de2 nearest | bilinear | bicubic | lanczos3 trans | haar
256 | 27.40 2237 24.70 2633 26.88_ 2682 | 2549

Le 256 ﬁu 2447 27.19 29.02 2963 | 2970 21.71

™ Lem 512 36.02 28.29 142 | 34.1% 35.23 35. 31.56
| Berbara, 512 | 2555 | 2222 | 24.54 25.3: 2554 2581 | 2564

msmmawﬁmmmwsmmuummm‘
! o the above algorithm, to the size of 256x256.

— fe

Figure 5. [mages of Lena and Barbara of sizes 64x64, 256x256.
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