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Abstract

- In this paper we introduce a new concept of E-capacity for biometric indentification
system, which is the generalization of the capacity studied by Willems et al [1]. We
investigate this function by constructing upper and lower bounds. When E — 0 we
derive the lower and upper bounds of the channel capacity which coincides with the
cupacity obtained in [1].
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1. Introduction

Reliable communication and security are very sensitive issues for modern global society with
a wide range of application domains. One of those domains is biometrics. Biometrics is
now used for physical access control, computer log-in, welfare disbursement, international
border crossing and national ID cards, e-passports. It can be used to verify a customer dur-
ing transactions conducted via telephone and Internet (electronic commerce and electronic
banking). In automobile, biometrics is now adopted to replace keys for keyless entry and
keyless ignition.

One of the main issues in biometric security is the reliable identification of persons based
on their biometric data.

The objective of a biometric identification system is to identify individuals on the basis
of physical features. One of the oldest and probably best known of such features is the
human fingerprint. Over the last decade other human features have become practical, and
there is now an active research community on iris-based recognition, face recognition, voice
recognition and others [2].

Willems et al [1,3] investigated the fundamental properties of biomertic identification
system. It has been shown that it is not possible to identify reliably more persons than
capacity the which is an inherent characteristic of any identification system. They derived
the capacity of such system.

We are interested in a number of individuals that can reliably be identified by a biometric
identification system in dependence of the quality of the observations. Within this system
our question has an answer in terms of an information-theoretical quantity.
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Fig. 1. Model of biometric identification system
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2. Notations and Definitions

The following conventions are applied within the paper. Capital letters are used for rands o
variables (RV) X,Y, Z taking values in the finite sets X, Y, Z, correspondingly, and low {e
case letters z,y, z - for their realizations. Small bold letters are used for N-length vectors:
x = (Z1,.., zx) € X¥. The cardinality of the set X’ is denote by |X]|. The notation jal* il
be used for max(a, 0). Y
There are M individuals and each individual has an index m = {1,2,---,M}. A biomets
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data sequence x(m) = {z1,23,-+-, Zx}, where 7, € X,n = I,N corresponds to each
individual m. All these sequences are supposed to be generated at random with a given
‘ probability distribution =
Q"(x) = II Q(an)x € 2.

Enrollment phase. In this phase all biometric data sequences x(m) are observed via
& discrete memoryless enrollment channel W (y|z) with finite input alphabet &' and output
alphabet Y, s

Wf'(rlx)=1'IlW1(mI=..). xex¥, ye)V.

The resulting y(m) enrollment output sequences for all m = {1,2,:--, M} are stored in

a database (define it as Ypg).

Identification phase. In the identification phase the biometric data sequence of an
unknown individual is observed via a memoryless identification channel W;(z|z) with output

alphabet Z, ”
Wy (2lx) = [] Wa(zalzn),z € 2¥,x € 2V,
n=]

The resulting identification output sequence z is compared to the sequences y(m), m =
1,2,+--, M, from the database and the identification function

gN:ZN_'{Gsllzi"'nM}

produces the index of the unknown individual m’ = gy (%), here 0 stands for the case, when
the unknown individual has not been observed by the enrollment phase. Following [1], we
do not consider the probability who an individual, who did not undergo the enrollment pro-
cedure, is identified as one of the individuals that has been enrolled properly.

The following probability distributions are given
P={PQy= );,Wx(vls)Q(z). z€X, yeY}

W(zly) = Mﬁﬁ%ﬂi’%,

The channel W is assumed to be memoryless:
WGaly) = [T Wiali), 3€2", yed™.
One of the main parameters of. the system is the rate, which is supposed to be constant
Railog,M.

N
The next parameter is the error probability

e(N,m) = W¥(Z¥\gg! (m)|y(m)),



Uppﬂ'ndwwamwhﬂmmu ]
)

gt(m) = {z:9v(®) = m}.
\\bmmmﬂmﬂmmmmwubmﬁ-
e(N) = _ B8 e(N,m),
= = z(N.m}
") M nledl'I
TheE-upaciwﬁmctioufotr.hegivenE>0ildeﬁnedu |
C(E.P W)= ;ﬁ_;% log M(E, P*,W,N), r
s M(E, P, W,N) = sup (M : () < ep(-NE). ,

We denote by C(E, P*, W) the E-capacity for the average error probability.

Weg.hnllusethefol]awinsPDinthefm'mhtionofmzlm
P={P@),veX}
V={V(zly).z€ 2,y €D}

For the information-theoretic quantities, such as entropy Hp(Y), mutual information
Ipv(Z AY), divergence D(V||W|P) and for the notion of the type we refer to [4]- [9].

3. Formulation of Results

decﬁnsthzlambound{mndomwdingbwd)ofthaidmﬁﬁmdonsupmqhgu:
denot.e.' A :
R.(E,P',W)=

- : +
= Pv-D(PaVilProw)SE 11""(2 AYYED(ReVIF=oW) =K. L)

Forthefurmulationoftheuppa‘bound(aphmpacﬁngbamd]oftheindmﬂﬁmlon!}-
capacity let us introduce the following function:
A : i
Ry(E, P\ W) & | L oS8 y<s TPV (EAY)- @)
Theorem. For the biometric identification system with the given P*,W and for all

E>0
R.(E,P',W) < C(E,P',W) ST(E,P',W) < Ry(E, P*,W).

For the proof of the theorem we use the method of types [4,5,9].
The proof of the theorem is u:cpoaed in sections [4,5].
BECL I g L
C = Ip-w(Z AY).
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4. Proof of Lower Bound
#The generation of the biometric data is random, so in database we have a random code ¥pp.

w7or decoding the minimum divergence method is used [4-6]. According to this method z is
“iecoded to such m for which:
z € T2y(Zly(m))

sand PDs P, V are such that
D(PosV|[P*cW)

' 18 minimal.
The decoder gy can make an error, if for y(m) there exists y/(m’) (m # m'), types P', V'

wsuch that
2 € T3y (Zly(m)) N T2y (2l (m))
D(P' o V'||P* o W) < D(PoV||P* o W). i (3)

\Let us denote by D = {P,V, P,V : (3) is valid}, then

otm) < W { UTEZly(m) ) | Tl (mytom)}

< CET )N U (@l (m)] x W aly(m)).
D migm
IThe last inequality is true, because for the fixed types of z, y(m) the probabilities are
] tant.
mWeshnﬂmhhemodiﬁc&ﬁmofpmkinglunm&om[M]. y
Packing Lemma. For the given P*, W, forany E>6§>0and —

M > exp {N |rp,v(zn Y)

P‘.V:.D{P?V]ﬁ"ow)ss

+
+D(PoV||P* o W) -—E—6| } ()
for sufficiently large N the following inequality holds for any types P, P',V,V' and for all
m= I.H
BT @ym)N U TEv(2ly (m')|
m'gm

< [T(@ly(m)|exp { - N|E- D& o V)P o W)[ } exp{-ND(PIIP?)).  (8)

We omit the proof of lemma as it includes basic steps of the proof for packing lemma.
Taking into account (3) and (5), we can upper estimate the error probability of identifi-
cation of the individual m:

o(N.m) < 35|73 21y (m)
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x gp{ _N(E- D(F'e VI|P* e W])} x exp{—ND(P||P")}

x W (zly(m)) S gm{Nan(z ¥}

x exp{—N(E - D(Pe V||P*e W)} x exp{—ND(PI|P*)}
x exp{—-N(Hrv(ZIY) + D(V|IWIP)} }
< exp{~NE} < exp{-N(E - &)}- ,
FAT A _ i
The last inequality is true as the number of all types P,V,P,V' is not greater ‘h
(N +1)2P=L, Considering the continuity of all expressions, when N — oo, the arbitrar
probability distributions can be considered instead of the types. .

<

5. Proof of Upper Bound
Let E > 0 and the average mpmhabﬂiﬁ}'nﬂsﬁelth:cnndiﬁnn
#(N) < exp{—-N(E - 9)}-

It means that
- x Wi — g mily(m)) S exp{-NE}. @
For each P and V' we can write

..ef,.%nn,. W (Tev(Zly(m)) - g (m)ly(m)) < M m‘cp{.-N E}.
Wf"(sly)iamnmntformriouasmdyofﬁxod P,V, then

> {{TevEy(m)] - [T (Zlym) 0™ ()] PGy

Since

meTp(YINYpn
< Mexp{~NE})
i {
N,
Wi (zly) Lm}yzh o Tp.v(zlr(mnl - % [ty g-‘{m}" _
< Mexp{—NE}.
As the code is random, then
E|Tp(Y) N Ypp| = m);‘ P*(Tp(Y)) = M - exp{—ND(P||P*")}. (t
Taking into account that

W (zly) = exp{—~N(D(V|Wi|P) + Hpy(Z]Y))},
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e get
Y. |Tev(Zly(m))| — M exp{—NE} exp{N(D(V|W1|P) + Hpyv(Z[Y))}

meTp(Y)Yon

< Y |Tev(Zlytm)ngi(m)|.
meTp(Y)"\You

“From (8) we have
2. |Tev(Zly(m))| - E|Tp(Y) N Yps| - exp{ND(P||P")} - exp{—NE}

meTp(Y)\Ypu

2 exp{N(D(V|Wi|P)) + Hpv(Z|Y)} < 3~  |Tpv(Zly(m))ng~"(m)],

meTp(Y)"You

| Y. |Tev(Zly(m))l — E|Tp(Y) N Ypp| - exp{N(D(P o V|| P* o W})
meTp(Y)NYon -

+Hpv(ZIY)-E)} < 3 [Tev(Zly(m)) ng™(m)|.

meTp(Y)NYpp
| Further,
EITo(Y) NYop| - exp{Hpy (ZI¥)} [(N + 1)t
- (N (DPVIIPWi) - E))| < esp{NEr(2)

As the number of messages M can be presented s a sum

M =3 [Tp(Y) N Ypsl,
and there exists a major type P such that

EITp(Y) N Yos| 2 M(N +1),

then

M(N +1)™ - exp{NHp(ZI¥)} [(N + 1451 _ exp{N(D(P o V||P* o W3) — E)}

< exp{NHpy(2)},

exp{NIpy(ZAY) -6}

M < (N 1) P2 — exp(N(D(P o VI|P~ o W1) — B}

The theorem is proved.
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Representations of Results !

6. Numerical
}.-metth'annulﬁﬂ;hm’;

y 0,
y=x+N={7 winP=05

and similarly
, with P=05 t

z=x+N.={1_ o e

Then for W (zly) we have

w(ipn) = W(0|0) = de = di+

W(1]0) = W(0[1) = (1 —de) »di+dex(1— di) = d.

mhﬁﬁv?mbgu?myﬁdnihﬁ: b:p}u“c’;t,;y:mﬁ o channel Witk
IYAZ)=1 — h(d).

mrmethuwM:hanmbuMofMﬂdew

(l—de)t[],-djjagl_d' {

hﬁmﬁﬁthM=2Nn.Fbmthebgmd’°ow“°“ kithe ‘
e

Fig.1. Bounds of [E-capacity, when E = 0.3. i
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Fig.2. Bounds of E-capacity, when E = 0.2.
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Fig.3. Bounds of E-capacity, when E = 0.1.

We can see that when E' — 0 values M for lower and upper bounds converge.

From the plots the greatest number of individuals can be computed. For e'nmple. for
==101:

@ for small reliability £ = 0.1 and N = 100, we obtain M = 6357376,

o for greater reliabllity E = 0.2 and N = 100, we obtain M = 4705.

Here, the number of individuals is much smaller,

To increase this number consider N = 110, then M = 10960.

The considered dependence of main characteristics will help to design ptad:lcal biometric

‘ystems.
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munudGwuhpud mwympywl quuquifupp: Lunwqnuuimd b wyn pouGlghwi® Jhphe HI
bpp E — 0, dklp unwbnug ’

uwnnphi qﬁmhmmmllmﬁﬁhph yunmgiui thengm:
fuujmnnt mGwynipywl ytiphG b wnnph qﬁmhlmnmllmﬁﬁlmn, npntp hundpGyGn b 1)

nud uungyud mGwympyul htwn:

YhGuwywthw

BepxHsis B HIKHAT rpaHHIBl E-IPONYCKHOM crocobHoCTH
GuoMeTpHIECKOH CHCTEMEL HACHTHHKAHE
M. ApymionsiH, A Tep-Bapaanss 1 A. Mypaasn
A=HOTAIHA

B crarhe BBOANTCA HOBOE nonsme E-nponycKHOil CIOCOGHOCTH AASL Guomer-
pmecma CHCTEMB Meumd;mmnu. Itﬂ‘l‘l‘.‘lpm SABASIETCH me“neu I]‘pom
c10COGHOCTH, M3yieHHOW BuaeMCOM H AP. B [1]. OYHKIHS HCCACAYETCH myTen:

it rpasnn.  Koraa E — 0, MBIl noAyuaes BEPXHIOW

NOCTPOEHHS BepXHell N HHXHE
H HIDKHIOW TpaHHIb NpOImyCKHOM crnocoGHOCTH KaHaAa, KOTOpHE COBHapaioT o

npOIyCKHOM cnocoBGHOCTHIO, MOAYYEHHOT B [1].
|



