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Some modification of the Extended Fuzzy Constructive Logic [14] is considered.
It is proved that this modification is actually equivalent to the Intuitionistic Fuzzy
Logic introduced in [9].

I Introduction

In [9] the logical system of Intuitionistic Fuzzy Logic is introduced where some features of
uuitionistic logic are brought into concordance with the general concept of fuzzy logic ([6], [7],
(0], [11]).

However the considerations in [9] are not based on the intuitionistic [3], or constructive
eproach ([18], [20], [21]). They are based on a set-theoretical approach, where the concept of actual
iinity is admitted. In [14] the system in the Extended Fuzzy Constructive Logic is created, where
,mwmwmuawmwmpmmmm

hﬂﬂlmpl]nmhofhnyummmh[u]uhudmﬂnmmmlm
18], [20], [21)

Below some modification of the Extended Fuzzy Constructive Logic introduced in [14] is
tnstructed; this modification is based on the set-theoretical principles. It will be proved that the
vantioned modification is actually equivalent to the system of Intuitionistic Fuzzy Logic [9]. So the
rnnection between logical systems considered in [9] and [14] is established.

| Some Features of Extended Fuzzy Constructive Logic

Let us consider some definitions of notions used below.

A recursively enumerable fuzzy set (REFS) having the dimension n21 is defined as any
ursively enumerable set of (n+1)- tuples (x,x;,..,X,,6),where all x;, belong to the set of
itural numbers N = [0,1,2,...}, and & is a binary rational number %_-,sndnhn 0ses1(ct [5),
12]-[14], [16]. [17)). The notion of pseudonumber is defined as in [15]. Elementary relations =,<
‘tween pseudonumers, the operations +,— on pseudonumbers as well as Goedel numbering of
.eudonumbers are defined similarly to [15] in a natural way. Specker’s munbers are defined ([8],
'5]) as pseudonumbers generated by constructive increased bounded sequences of rational
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i =di 1 than its r's represeniation is defined as the
“mmmmw 1mr s "(‘[;M:};m ;1212) such m any n—tple (x,,%;,..x,) of ...;:
pumbers the value ¥, (%1, %2 e) 18 8 Goedel number of Specker’'s number (which is alsg
denoted by ¥/, (Kpy X1 ¥s) ) satisfying the following conditions:
(1) if there is no& such that (Kys By v Fup ) € @ then ¥, (51,5 ¥a) =03
(2) if there exists such £, then ¥, (%, X3 s %a) is the supremum of the numbers £, such
(X, Xy s X E) EC -
An n—dimensional REFS @ is said to be open i
[13], [14]): : £
1) All (n+ 1) —tuples having the form (X,,X;.-»%,,0) belongto .
Eeaand 0S5Ss then (X,,X3rnsXprd) EQ .
£) e a, where £> 0, there exists suchd > & that

92

- f it satisfies the following conditions (ef.

2) If (%, %300 %a
3) For any (n+1)=tuple (), ¥zsnTar
(x,..:,....,x,,é’)e a.
Wcmﬂuwwoﬂyopmkﬁmcm.mmREFShmMm”
iuspeckﬂ"swﬁm'rm n —dimensional open REFSes & and S are said to be equivalent
(cf. [13], (14D if w.(x..x,,.-.x.)-w,(x"xn-«.x.)bf any natural numbers x,,x,,...,x,. The
equivalence between a@ and B is denoted as usually, bya = £.
ThisrellﬁonisihemuMuhrbnofqﬁuknumihediu[ls]m[u];hi
different from the relation of equivalence considered in [5], [16], [17].
Wemuﬂlnmowﬂimmmw(l)mauﬂ of n-dimensional REFSes
a and f; (2) intersection an B of n-dimensional REFSes & and B; (3) Cartezian product
ax B of n-dimensional REFS & and m -dimensional REFS f; (4) projection 47 (@) of an n-
dimensional REFS @ on i-th co-ordinate, where 0<i<n; (5) generalization T} (@) of an n-
dimensional REFS" a on i-th co-ordinate, where 0<isn; (6) transposition T, (a)of i-th and
th co-ordinates in an n-dimensional REFS a, where 01, j S n; (7) substitution of variables
Sub”i;(@)in an n-dimensional REFS & (that is, the substitution of the variable x, for the
variable x,).These operations are defined as in [13] and [14). The definitions of U.r\x.T",.L;"T:'

are similar to those given in [16] and [19]. By v" (correspondingly, A" ) we denote n-dimensional
open REFS a( mmwﬂdi“l‘!’» ﬂ] such that for all xl’xi""lxu V-(’ns-‘:----»-‘.)'l

(correspondingly, ¥} (¥, X3 X, ) = 0).

On the basis of the mentioned operations the semantics of the Extended Fuzzy Constructive
Logic (EFC-logic) is described in [14]. For the convenience of the reader we recall here the
definitions of main notions connected with this semantics.

n-dimensional REFS- ideal A is defined as a non-emply sel of open n-dimensiona
REFSes satisfying the following conditions:

" () IfaeAand fca then feA.

(2) faeAand feAthmavfel.

(Note that the notion of set in [13], [14 ] and in this section is interpreted in constructive

sense ([15], [18], [20], [21])).
Let A be a non-empty set of n-dimensional open REFSes. Let us consider the set Ao

n-dimensional open REFSes £, such that there exist a, €A,a,€4,..a, €A satisfying thw
condition: fc @, wa,U...ua,. It is easy to see that the set A’obtained in such a way is |
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REFS-ideal. In this case we say that A’ is a REFS-ideal generated by the set A. n-dimensional
REFS-ideal A is said o be principal ideal if there exists an n-dimensional REFS /4, such that
aeh if and only if ag . n-dimensionsl REFS- ideal is said to be complete ideal
(carrespondingly, mull ideal) if all n-dimensional REFSes belong to A (correspondingly, only A"

belong 1o A)

The notion MWMMM&:&;B of logical operations &,A,>,—,,3 is defined
in a usual way ([2], [4]); we consider predicate formula without functional symbols and symbols of
mmnl.'l'huyn:nbul T ofwduthhesymbol F of falsity are considered as elementary formulas.
All auxiliary notions connected with predicate formulas are defined in a usual way ([2], [4]). We
suppose (hat a sequence of all variables x,,x,,... included in considered predicate formulas is fixed.
Index majorant of a formula A is defiriéd as any number k such that every index i of a variable
,‘(buhfreundbmmd)includedindislmorequllnk.

Nuwletudaﬁna!hcm:?nﬁmofpndmmmin[u])inmmofﬂu
Extended Fuzzy Constructive Logic (i.e. EFCL- semantics). Let A be a predicate formula which
does not contain predicate symbols except p;, p,,..., p, having the dimensions, correspondingly,
k,,t,,...,k,‘.ldkbednhdexmajombrA.EFCL—mefwAisdeﬂnadasnlﬂi]mnﬂn
@ which assigns & k,- dimensional REFS-ideal to any predicate symbol p,. An EFCL- assignment
for A is said to be principal if all REFS-ideals assigned to p,, p,...., p, are principal REFS-ideals.

Now we define (as in [14]) the EFCL-interpretation I1,,(A) of a formula A conceming a
given EFCL-assignment @ for A and a given index majorant k for 4. This notion is defined by
induction on the construction of A. Let A be an elementary formula having the form
2, (& Exré)), Where §,85,...,¢, are variables having the indices, correspondingly, Ji, J3ssJi5
let k be a number such that j<k for 1<i<(.Let A be a f-dimensional REFS-ideal assigned to
p, in an EFCL-assignment @ . For constructing of I7,,(p,(£,,$;.-4,)) we construct the k-

dimensional REFS-ideal A’, generated by all REFSes ax¥*~', where o€ A. After this we
construct the k- dimensional REFS-ideal A” gencrated by all REFSes 7 obtained from the REFSes

belonging to A’ by the systom of transformations T, and Subj transferring the variables with
indices J,, Jy»sJ; ON the places, correspondingly, &,,4;,....&, .The REFS-ideal obtained in such a
way, is 11,,(p,(£,62,-4;)). The REFS-ideals /7, (T) and IT,.(F) are principal ideals,
generated correspondingly, by v' and A'. The REFS-ideal /7, (B&C) (correspondingly,
n,(8vC)is defined as the set of open k-dimensional REFSes, having the form fny (
correspondingly, fuy), wherefell,  (B),yell_ (C). The REFS-ideal [T, (B>C)is
defined as the set of all open k-dimensional REFSes @ such that fnwell  (C) for any
pell,.(B). The REFS-ideal 1,,(~B) is defined as /1,,(B> F). I1,,(3x,(B)) is defined as
the set of all open k -dimensional REFSes @ satisfying the following condition: @ <1} (8) for
some fe /1,,(B). /1, (Vx(B)) is defined as the set of all open k -dimensional REFSes @ such
that T (w)e 17,,(D). :
Note that all sets of REFSes mentioned in the definitions considered above are REFS-ideals

(see [14], Lemmas 3.1-3.8)
A predicate formula A is said to be strongly EFCL-valid (correspondingly, weakly EFCL~
valid) if for any EFCL-assignment @ (correspondingly, for any principal EFCL-assignment @) and
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i n-,iotlllllﬁlfAdthﬂoﬁinlwndiﬁOﬂhollh: n,.(4) isa

imensional REFS- mblmﬁgmnwﬂh[ld]:(nmm
complets 4 et calculus is strongly EFCL-valid; (2) some

ing the form
mﬁﬂﬁwv ) = (4D BV (4 O Vx(d D P(x)) 3 (4 2 VxP()),
(where A does not contain free x) are not weakly EFCL-valid (see [14], Theorems 5.1 and 5.2).
nded Fuzzy Constructive Logic
mmﬁmﬁnwmsmmdiﬁpﬁcMofEmMchwy?mw,
will be denoted WST-EFCLWMMMWW"). We shall
mhhmkmﬁmmkwm%ﬁm.'hwj}tuh. ::.::ﬁ::dm:
P s "Slllﬁ:umﬁﬂl RBFS mh" -REFS-'MI’ ‘fllkh i!
ook e el comsiCHS i mmmﬁmofmismmidmdﬁmﬂn'elmhhr.
notion of REFS is actually not changed). (ST~ REFS-ideals

set

called in [1] “classical set ideals” or “CFS-ideals™.)
=5 m“' e given set of n-dimensional REFSes, the notion
of complete ST-REFS-ideal lbeumufquT-RBFS-idulmduﬁneddmihﬂymﬂ.

W:m:ull use the “classical” set-thearetical notion of real number. Standard real function
having a dimension 7 is defined as a function f (in the set-theoretical interpretation of the notion of
function) such that for any natural numbers X,, X3, X, the value (X2 X300 X,) i8 2 “classical®
real number such that
0 f(X;,X30sX,) S 1. Clearly, for any n-dimensional ST-REFS-ideal Athere exists an n.
dimensional standard real function f (which is said to be an @ majorant of A), such that for any

natural pumbers X, Xy, Xy S (X Fprea®) = n:g'*‘. (%, X35+ X, ) . The majorant of ST-REFS-ideal

3. Modification of Exte

A will be denoted by A /.

We say that n-dimensional ST-REFS-ideals Aand Q are quasi-equivalent if

f;(’]v‘ll"--x-)=fn(x|-xh"‘v"a)

for any X,,Xy,ea¥y+

Below ST-REFS-ideals will be considered up to their quasi-equivalence.

Primitive n-dimensional REFS generated by natural numbers 2,,z,,..,2, and rational
numbera such that 0< a < 1, is defined as an open REFS a such that
a if X =2,% =% =2,
0 in other cases.

Such a REFS will be denoted below by W(a,z,,2;,...2,)-

Now let f be an n-dimensional standard real function. Let us consider a ST-REFS- ideal
A generated by the set of all REFSes W(a,z,,2,,...,%,) such that z,,z,,..,z, arc any natural
numbers, a is a rational number, a < f(2.5;,..,2,) if f(2,2;,..,2,) > 0,and a=0 ifand only i
(2,230 2,) = 0. The majorant of such A will be equal to /. Hence the following Lemma is true.

Lemma 3.1. For any n-dimensional standard real function f there exisis a ST-REFS-ideal
such that its majorant is equal to f .

The ST-REFS ideal A obtained by the construction described above for an n -dimensional
standard real function f* will be denoted by 4 .

q‘. ("I'x! l'"l".) .
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For any standard real function f we consider the class of ST-REFS-ideals having the
nw[ All these ST-REFS-ideals are quasi-equivalent to 4 .

ltbmﬂymﬁnlﬂunuﬂmﬂhmofﬂ-ms-mmmpmme
arelation of quasi-equivalence between ST-REFS-ideals. So for the description of these
1l transformations it is sufficient to describe considered transformations for A ,-ideals.

Theorem 3.1. f [ and g are n-dimensional standard real functions then the following
» slatements hold.

(1) The set of all open REFSes represeniable in the form @ =a'u f (correspondingly,
. w=anpf) where ach,, BeA, isan ST-REFS-ideal which is quasi-equivalent to A,, such
 that h(xy, %300, %, ) = maX(f (%), 2300, X, ), 8%, X300 X, ))

(mw. K’l » X3 -“rx.) = EW(’U‘I I“‘!x-)ogtxpzjr"lx')))‘

 (2) The set of all open REFSes o such that @ n@ € A, forany a € A, Is an ST-REFS-
 ideal which is quasi-equivalent to A, such that
1 if f(F%00%,) S 8%, 2,7, );
B, By ) = lgfxuxl"“-‘-) i [(x.x5,..5,)> 8(x,x,...%,).

(3) If j is a d-dimensional standard real function, where d <n, then the set of all open
REFSes @ representable in the form ®=axv"™”, where a €A, is quasi-equivalent to ST-
REFS-ideal A, such that h(x,,x;,..,%,)= j(X,%,...x;) (here h has fictitious variables
XyasXasar-a¥u):

(4) The set of all open REFSes @ representable in the form T; (), where 1<i, j<n,
@ €A ,, is an ST-REFS-ideal A, such that

h(xuxj [SENT JRTE A% SRTEEE .IJ.S‘,,.,....J-'.) = f(‘,,I;,...,.I'H,X:,Xm,...,.'fj_t,S,,Xj,l,...,x,)

(5) The set of all open REFSes @ representable in the form Subj(a) where 1<i, j<n,
@ €A, is an ST-REFS-ideal A,, such that

h(xil‘x! ""':l-l ’xl"x“l"“'x}-hxj 'xjoll'“'xn) % f('r!lxln-"axm nxpxmv"’qul lisxma---lx,)

(6) The set of all open n-dimensional REFSes @ satisfying the condition ® <} (@) for
some @ €A, is an ST-REFS-ideal quasi-equivalent to A, , such that
Mxl -’1n---)xf—llxnxhll'"lxp} L E':E_f(xlixlr--:xf-lixilx.l-vli‘"lxl) =

(7) The set of all open n-dimensional REFSes w satisfying the condition T} (@)€ A, is
an ST-REFS-ideal quasi-equivalent to A,, such that

k(-"l .I;.---.3,.“1’,.1,.“---.1.) - ilﬂ;f(xl-‘r:rj'-xo-lvxr-xhlt'":x-]-

Proof. The statements (1)-(7) are easily proved using corresponding definitions. Let us give,

for example, the proof of the statement (2).
Obviously, the set of all open n-dimensional REFSes @ such that @@ € A, for any

aeh, is an ST-REFS-ideal A’. Let us consider some n-tuple (z,,2;,...,2,) such that
S(2,23,-22,) < 8(2,,%2,.2,) . If @ is any rational number, 0<a <1, then forany @€ A, the
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o6 5
set o =W(a,5,5v% satisfies the condition: '
¥ (_-l_gl,_,,:_)sf(x,,.-,.....:_}sg(x,.x,,....:,). Hence an@el, for any ﬂ'ﬁh,, So

Q‘A'. If f(‘ng.n-g:.)"(szp----zu)t and "'{xl-xxr-w:.)o then for any ﬂeél the et

o= W[d.:,,l',.-.-.l.) satisfies the condition 9’.,.(:..:,.--..-'.) < g{:u::----‘.). and @ e ﬂ' s

" So, if a < h(z, %3, 5,) Where {2y, 23 =) has the form noted in the definition of the
statement (2), then W(@, % Zsrn?s) €A Henoe A, CA" because 4, is generated by the seny
noted above. The reverse statement A’ A, is obvious because

W(@,2yp 3o sy) DAVINE the form :
»o REFS @ belonging to A’ can satisfy the inequality ¥, (%,%;.%,)> 8(%,%,.X,) in the
case ﬂrl-&.--ux.)>x(8’:-xz------'-)- it
Other statements l)-('f)mp-owdhl way. . :
mem&mhofummmwmhmlm
This logic will be denoted as “ST-EFC-logic™ extended fuzzy constructive logic™),
Let A u-memmmmmwmmhuw PPsveapy
having the dimensions, correspondingly, K ky,--.k; let k be index majorant for A. ST-EFCL.
assignment for A is defined as an assignment @ which assigns to any predicate symbol p, & k.
dimensional ST-REFS-ideal. o= : A :
Wemidusr-kﬂfs-iduhnp»ﬂnkqmuwdm in connection with this
mew&nmyﬂ-kﬂ?&idnhuipdmm p, has the form A, for some

h.
ST-EFCL-interpretation TT,,, (A) of s formula A concemning a given ST-EFCL-assignment

o for A and a given index majorant k for A is defined similarly to the notion of I1_, (4) given
above with the only difference: ST-REFS-ideals are considered instead of REFS-ideals. In
wnneﬂimwﬁtﬁemmﬁbﬂmntbmdthumdmlmmhsmnh
formulation of Theorem3.1 we obtain that ST-EFCL-interpretation T1.,(A) of any predicate
formula 4 has the form A, for some standard real function /. The transformations of function A
gmmmdhylogiulopmﬁommdnmuﬂisnmdinihemmsm“
Theorem3.1. 4
We say that a predicate formula A is ST-EFCL-valid if for any ST-EFCL-assignment ¢ and
for any great enough index majorant & for A the ST-EFCL-interpretation T1_, (A) bas the form A,
where the function / is identically equal to 1.

Corollary of Theorem 3.1. A predicate formula A is ST-EFCL-valid if and only if the
sequent = A is valid in the sense of Intuitionistic Fuzzy Logic described in [9].

Indeed, the logical transformations of standard real functions described in the corresponding
points of Theorem3.1 are the same as the transformations of models of IF (conceming logical
operations) described in [9] (see [9], pp. 855-856 and p. 851).

Some statements of this paper are formulated (without proofs) in [1].
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HHOf HeveTxOll KOHCTPYKTHBHON Aoruxum [14],

PaccMaTpHBaeTCH MOAH(EKAINN PacuIHpe
eCKll JXEHBANGHTHA H HTYHIHOHECTCKOM

AoKasnBaeTcH, YTO AAEHAS MoARGEKAIES DaKTHY
HeweTxoit Aoruxe, ompeaeAenHoft B [9].



