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1. Introduction

In long-term collective insurance model with
non-ruin probability W(t, z) in time interval
equation [1, 2, 3

EWa(: %) o cawa(:’ 2. A [W (t.z) - _i W.x - y)dF(y}] \ (1

(negative insurance sums) rent contracts [1] the
(0,1) satisfies to the following integro-differential

where x > 0 is the initial capital of the insurance company and F(-),z > 0 is the distribution
function (DF) of insurance sums. It is known [1] that 1 is true for almost all (t,z),t > 0,x >
0.

In the present paper new representation for solution W (¢, z) is funded. which is used for
assessment of critical Risks of insurance model in critical situations.

The concept of the insurance model with rent contracts is the following [1]. [4].

The insurance company provides its clients with regular premiums which decrease the
reserve at the rate ¢ < 0. Without loss of generality. we assume that ¢ = —1. The events
of client deaths or contract interruptions follow at random moments ty.ta,.... Bach such
event increases the reserve of the company by the amount of the unpaid rents Xj. Xj....
which are positive, independent and uniformly distributed random variables (RV) with DF
F and mathematical expectation a > 0. The moments {;.t5. ... form a Poisson point process
of intensity A > 0. Under these assumptions. the insurance amount S{u) = . Fs X;. which

<hisu
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the company receives in the time interval (0, 4], is a generalized Poisson process with the
intensity A and jump DF F. and hence

= =Au n

P{S(u) < z} = 3 SO poe ),

e L
where F*" is the n-th convolution of the DF F, F¥(z) = 1 when z > 0 and F'(z) = 0
when z < 0, and P is the probability. The reserve 7(u) = z — u + S(u) of the company,
where z is the initial capital, can become negative at some time moment, meaning a ruin’ of
the company. For company not be ruined in the time interval (0, t] (or never), it is necessary
that u — S(u) < z as u € (0,%] (u € (0,c0)). Therefore ([1], p. 164) Wi(t,z)=1,z>tand

W(t,z) = P{r(t) Sz} =1— j%d,?{sm Sy-z}, 0<z<t,, ... (2

where r(t) = ogl;‘{v ~S(u)]. Let r = . [u— S(u)] and ¥(s) '=l'f"e"'dF(x)‘R- 520
Then, for the companies never ruin probability it is true the following formula ([1], p. 164):

W(z)=Plr <z} =1- [ S4P(SG) Sy} =1-e=, z>0, ®)

where w is the greatest nonnegative root of the equation »(s)'= 5 — A(1 —(s)) = 0.

Besides, it Is known that w = 0 for p; = Aa < 0 and w > 0 for gy > 1 (see [1], p. 52,
Theorem 4). :

In this paper we find new representation for W (t, z) and use the obtained representation
for finding of critical risks of insurance company.

We call “critical risks” to the asymptotic values of non-ruin probability W(t,z), when
the insurance company is in critical situation, that is the loading p; — 1.

For DF F we assume that it has the finite moment of order ~v. Then the Laplace-Stieltjes
transform (LST) (), Re & > 0, admits asymptotical representation of the form

\b(aJ-—l+u~Aa"L(-:-). 510, A>0 (1<y<2), @)

where the measurable L(z) > 0 is a slowly varying function (SVF) at infinity [6].

If L is a SVF, then for any & > 0 we have z*L(z) — 0 and z7*L(z) — 0 as z — oo [7].
Hence 1
7L(3) w0 1<752, ()

which mokes 4 meaningful. Moreover, 5 is true uniformly in a.

1The term “ruin” in the risk theory has arisen historically and precisely would be named this event, for
example, “deficiency”. Insufficlency of a reserve does not mean ruin of the insurance company in sense of stay
of its operations or bankruptcies: the term “ruin” of the theory of risk should be understood as technical. 1f
the balance of reserve fund s negative, it yet does not mean negativity of balance of the company as a whole
as the company can have other sources of repayment of deficiency (for example, own means, loans, etc.).
On the other hand, even at positive balance the company can experience financial difficulties if the part of
actives in which the reserve fund Is laid out, has low liquidity (the real estate objects, precious metals and
so forth). “l'hus, it is not necessary to mix ruins probability with probability illiquidity (see [5]).
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Note, that 4 is equivalent to the relation

1-1-'(:)-1%%9:"1,1:).:—»:0.
vhster(-}ilthesulemcmfumion-It'smthn:theDFFkhe:\'{uﬂmmim.
We use the following notations B = Mp = 1 —alF@ = 111 - Fldy

v(s) = re‘“df‘{:]. Then v°(s) = =52, 8> 0.

I —— .

9. New Representation for Solution W(t, )

Theorem 1 Let {S(v) : 0 < Sm}knmmﬂemdommwimmmu,:
maﬁﬁww:mwmafmﬂammmmhncm
vanishing at u =0. MMMaWU,{:)sU(:,y)m};M

1
“:(t':}“{l"Id_,U(mF)- 0<zr<t, ={ 1-”(’-“*”(‘-3)‘ g::s‘-
15 z2t, Y B2
W(:)sl-fd,U(:.y)=l-—e"‘"'. x>0,
where

fe“"d.U (x,y) = ™,

(]
and z = w(s) i.ulkcum‘qnzmlofﬂuquaﬁaﬂv(z)samﬂ:e domain Re(s) = 0.

Pmaf:'lhkingintomuutthu“’(t.:]=l.:2t.by2and3\wgut

1- [ 34,P(SG) Sy=2), 0<zsSt
2>t

W(t.a) = [
md oo
W =1- [ Z4,pP(sw) Sy-a}, >0

It is known (see [1]. p. 67) that

£

e
je ";d,P{S{y) <y-z}=e. Res>0. (6)
and one can see that here P{S(y) < y — x} = 0 when y < z. Consequently. by 6 we obtain

JeZa,pise) < u- 1) = e,
o v
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Besides, e=*4% = ¢~™_ and hence denoting
E
olz,9) = [ T4, P(St) <y - 2} = e, ™
o

we obtain p(z,0) = 1. Let us show that the function (z, s) is completely monotone (CM).
ie. (—1)"™ = 0 [8]. To this end, we note that e™* obviously is CM and show that the
derivative of the function w(z) —w > 0 is CM. In fact, w(s) is & solution of the equation
y(g}a],lﬂdthﬂmm

Bla) =1+ 5 — 2 = yu(e))

we obtain :
. w(s) = s+ X —Aj(s), (8)

Wlo+ A= 25(s)) = Ba). ®

By 9 the function 3(a) is the LST of some nondecreasing function (see [8], p. 497). Without
loss of generality, we assume that (s) is the LST of its own DF (otherwise we can divide
B(s) by A(0) > 0 and get §(0) = 1). Hence, the function f(s) is CM (see [8], p. 495,
Theorem 1), or, which is the same

(-1)kg®)(s) =0, k=0, 3 2: 0. (10)
From 8, it follows that (w(s) —w)’ = 1 — Af(s), and consequently
(=1)" (w(s) = w))™ = (-1)"(1 - AB'(s))®

= A(-1)" (8"(8)" V) = A(-1)"! (8™D(s)) 20, n21.

Besides, by 10 (for k = 1) we obtain (w(s) — w) = 1 — Af'(s) = 0 (for n = 0). Thus.
(w(s) — w)' is CM. Hence. the function ©(z, s) is CM since it is a superposition of the CM
function e and w(s) —w > 0, the derivative of which is CM (see [8], p 497). Consequently
(see [8], p. 495, Theorem 1) the function ¢(s, z) has the following form

0(s,2) = [ e 4,G(z.y).

0

Now, taking into account the representation 7 of the function (z, 5) and using a uniqueness
theorem we get =
;d--"{s{v) Ly -z} =dy{e™C(z,¥)}-

Thus, the LST of the function U(z,y) = e™™G(z.y) is e™*), and the proof is complete.
Remark 1 If a random process {S(u) : 0 < u < oo} has a density, then (see (1], p. 51)

U = [ 20P(Stu) Su-3),,
(1]

oz

Remark 2 From the proof of theorem it is obvious that the W (t.z) has the LST e~=t"),
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Denote 1 1
L0 = F e

7-1)(¢) is the inverse function of ™1/ L(t)- Then [9]
P\VOY o) (_{3_) o St
o~(§) EG |

1=1 101 (B/p) for quantities of the rate 3

where M

ForpTlmmmenmemuﬁmd'V(PfB)
- 2 Tl. |
(/B L§Y (Blp) and assume that p/B =081l o o |
functions A(s) respectively be the unique solutions o equations
.15:1:@z1+:vi')a.(:d20(£)umfyinsth¢wnditimvw}=landA({))=o’ 9],
then the following result is true [9]- |
Lemma 1 Um:mmﬂjilm!dmda{p)

w(alp)s) ~ BAADLe, A1

=20, then

s . 0 VoD )=o) pi Ll
-, alp) =o(p), A TL
BR=1 (5)1™, alp)~olpw) ALY
()", po=oale). ATLL
1, al)=olw) Amll
s, alp)=om) ATl
Als)={ V(s). alp)~ps, pll
A(s), alp~ps ATl
sth,  pw=olale), ATl
L (2), alp)=olp) mll
" el =ole) ATl
L=1 (&), alp~m). alll
1 (&), pw=olale)). ATl

Besides, formula 3 and Lemma 1 imply the following
Theorem 2 If the condition { is fulfilled and 9(p) — 0 as py —» 1, then the limit
Linix}P{ﬂ(p}r gr)j=1-e", z>0

exists if and only if

a0~ (2)"" 1570 (B) e

ZEquation =¥ + ¢ = s and its solution A (s) are introduced by Danielian [10]. Then, there are also
idered by Sahakyan [11] and Chitchyan [12].
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Let alp) — 0 us p — 0 and let 5(p) be that of Lemma 1. Then the following statement is

true in case of convergence ta(p) — 7,0 < 7 < co.
Theorem 3 Let the condition 4 be fulfilled and let 9(p) ~ B(p)Lg as p — 0 and t — oo, so
limit

that tafp) — 7, 0 < 7 < 0o. Then there exists the
3 P(O(PIr(t) < 2} =1 -! 4,U(z,¥) =1 = Up(z, ) + Up(z,0), z > O,
where (p,t) denotes the pair of passages p— 0, t — 0o and

! e~ "d,Uyg(z,v) = e™*A), 5 >0,

In all other cases lim P{O(p)r(t) < 2} = 1,7 > 0, where 9(p) = o(B(p)Lo) and B(p)Lo =

o(9(p))-
Proof: By Theorem 1,

. .
P{o(p)r(t) < z} = P{r(t} < ;,%)-} = [ : - 14U (35:9), © : :’ i ;"(P)- (11)
] Tz '

where

78"'4” (=,9) =™, (12)
0
Changing the integration variable as y = v/a(p) in 11 and 12, we obtain

1- l%:d.(l(;h,;h). 0 < z < td(p),

P{d(p)r(t) < z} = l
1, z > td(p),

fe-“sw (3?7) ;?@) ==, (13)

Besides, by Lemma 1, w(a(p)s) ~ B(p)A(s)Lo as py — 1. Hence, by 13 and the known
theorem on generalized continuity (see [8), p. 488) we conclude that a nondegenerate limit

ot =13 (ol )

exists if and only if 9(p) ~ B(p)Lo. The remaining cases 9(p) = o(B(p)Lo) and B(p)Lo =
o(?(p)) are degenerate, i.e. in these cases liwn}P{ﬂ(p}r(t) <z} = 1. z > 0. Thus, passing to
the limits in formula 13 we obtain

[ e dUs(z.v) = 40,
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)2 s and hence we obtain that if 9(p) ~ 3(p)Lo. then

8(p)Lo

ﬂlp}i ﬂ{ﬁ)‘ & e

30 Bk - Al

Further, w(s) =8+ AL — o(w(s)

A
foruursmdpcpn.'rhm. 1

alp) (AW op, (14) ,.
Blp)o = )
i Ei’;l..,_?.(!;)-_.o as p—0, (15)
3(p) Blp)lo

Mngintomunlthatto{p}-‘r(ﬂ«cfsml.bywui

since 14 is true for any fixed s.

get i |
l P{A(AI() < 7} =1 uf d,Uo(z, ). a0

mammmamfmmnom:sw(p)=m{p);g - o

M:mma(p)mmw{p)-.uup-»u:

Wi (2) =1,!5P{0(P)f(f) Sz}=1, >0

Remark 3 For any

In [0] it is ﬁad:hninmﬂ{p)~umdw=o(9(p))whenm—-lforU’g(:,c)
m:em :hcm:y function f(z,t) for which the following representation is found:

f(:.i)=$gl=‘m:-,,‘5—‘”:r(=§-l)="'v“ﬂnn¢1:. 1<7<2

. = v Lo [} = p—0,
were § (1) = ""9"{; p). 00 i [90(’3})-:(:)0P :

Therefore theorem 3 will take the following form:

Theorem 4 1) W, (z)=1—=¢"" in case of 0 (p) = o(w) when py 1 1;

)W, (z) =1 —fo{u.x)du in case of 0/(p) ~ w and w = 0(8 (p)) when py — 1.
In all other cases W, (z) =1, 2> 0.
Example

Consider the particular case when 7 = 2. Then under the conditions of theorem 4, when
pr— 1. Wy (2) = 1 — Fu (27) if w = 0(0(p)) and Wy (x) = 1 = e"o0=mH=3 1) 5 (r) w e~

il O(ﬂ} ~ w, where F, lll) is DF with dEl'ISR]' iy ‘u) = mexp{__éz} u > 0 (see |8n.
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