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Abstract

In this paper we give some algorithms for computing the complexity of some nor-
mal polynomials constructed by some recurrent methods. Finally some results of our
algorithms are given in a table.
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1. Introduction

For o prime power ¢ = p" and a positive integer n, let F, and Fi= be finite fields. A normal
basis N for Fys over Fy is a basis of the form N = {a,a,07", ...,a#""'} for some element
a € Fp. the element & € N is called a normal element of Fy» over F,. A monic irreducible
polynomial f(z) € Fy[z] of degree n is called a normal polynomial (N-polynomial) if it is the
minimal polynomial of some normal element. As the elements in a normal basis are exactly
the roots of some N-polynomial, there is a canonical one-to-one correspondence between
N-polynomials and normal basis.

one problem in general is: given an integer n and the ground field Fy, construct a normal
basis of Fy= over Fy, or, equivalently, construct an N-polynomial in Fy|z] of degree n.
Some results regarding computationally simple constructions of N-polynomials over F; can
be found in [3, 4, 5, 7, 8]. With the development of coding theory and the appearance of
several cryptosystems using finite fields, the implementation of finite field arithmetic, in ei-
ther hardware or software, designs or implementations, including single-ship exponentiators
for the fields Fyizr, Fyies, Fan, and an encryption processor for Fawa for public key cryptog-
raphy. These products are based on multiplication schemes due to Massey and Omura [10]
and Mullin, Onyszchuk and Vanstone [11] by using normal basis to represent finite fields
and choosing appropriate algorithms for:the arithmetic of course. the advantages of using a
normal basis representation has been known for many years. The complexity of the hardware
design of such multiplication schemes is heavily dependent on the choice of the normal bases
used.

In this paper we give some algorithms for computing the complexity of some normal basis
or equivalently some normal polynomials constructed by some recurrent methods. Finally
some results in a table are given.

57



58 wmdmmpuqoimnmwcumudww

2. Preliminaries

“'eunencwnmemm!uthtwillbehdpfulwdainourmﬂu

Theorem Kyuregyan [5), Theorem) For g = 2, let Fo(z) = 2""";’;"%- a N-
i lofrg;;nmﬂ;ﬁaumﬂiﬁbﬂuuﬁdﬂﬂumndmm):;o{“) =

and T3 &, = 1. Then, the sequence (Fu(2))ano defined by

Fan =37 Flz+ ), k20

ﬁcmmcfﬂ-pwmofd@uu?mﬂ..

= ; irreducible polynomial of degree n
Theorem 2 I.M!}Le&?{:}—z“mc.:" be an
over Fa mdg'{:] be a N-polynomial over Fa.. Also let

Fl@)=(@-z+ 1)"9(%). W

MF(:)ﬁmN-p&mcﬂﬁdofdwﬁany if and only if

(n+-:.%)—rn-pt’,—’,'%—n#u.

how the addition and multiplication in Fe» can be done in general. We
mmf‘nlzo:\:m space of dimension n over Fy. Let ay, a3, ..0n-1 € Fin bﬂnli?ﬂ.rb‘
over Fg. ThunweryelunemAEF.-mbempmeduA=Emmm,
a.eF..ThmF.«mbeidentiﬁoduF‘,'.:heutofulln—tupluwurF(.nndAeF,.m
written as A = (00,81, - @n-1). Let B = (bo, b1, vy ba-1) be another element in Fg=. Then
addition is component-wise and is easy to implement. Multiplication is more .nomplicued,
Let A+ B=C = (e, €1, Cn1)- We wish to express the ¢;‘s as simply as possible in terms

of the g;'s and b;'s. Suppose

n=1
ave =Ll der o
k=0

Then it is easy to see that
=Y abth =ATB', 0<k<n-1
W

where Ty = (¢¥)) is an n x n matrix over F, and B is the transpose of B. The collection
of matrices {73} is called a multiplication table for Fen over Fj. Observe that the matrices
{T:} are independent of A and B. In the following we examine the Massey Omura scheme
which exploits the symmetry of normal bases.

Let N = {ag, 1, .... an—1 } be a normal basis of Fyn over F, where a; = o*'. Then af = ay
for any integer k. where indices of a are reduced module n. Let us first consider the operation
of exponentiation by g. The element A% has coordinate vector (a,-i. 0. a1, ... ay-2). That
is. the coordinates of A? are just a cvclic shift of the coordinates of A, and so the cost of
computing A? is negligible.
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 Let tf}) terms be defined by (2). Raising both side of equation (2) to the g~/ — th power, one
finds that
th=t0,, 0<ijlsn-1
mmﬂy.qlémdf‘hhﬂlttnwmpuheq'ithinpmAandB.thmthemdrmﬁt
with input A7 and BT yields the product terms ¢ (AY" and BY" are simply cyclic shifts
of the vector representations of A and B). Thus each term of C is successively generated
bymm“theﬂmdﬂmnndﬂnuChMlnndockcydaﬁenmbaof
mmukdh&hdmdtth&emhdmmhmmn.m

u—m:gt‘,-a, 0<i<n-1, t;€F, (3)

Let the n % n matrix (¢;;) be denoted T It is easy to prove that

tg) =t!—1.i—jr fard! i, 7, k.

Therefore the number of non-zero entries in T is equal to the number of non-zero entries
in T. Following Mullin, Onyszchuk, Vanstone and Wilson [9], we call the number of non-
zero entries in T the complexity of the normal basis N (or the complexity of the normal

polynomial f(z) corresponding to N) and denote it by Cy.

3. Algorithms and Results

The following algorithm, that computes the complexity of given a normal polynomial is given
in 2].

Algorithm 1([2], Algorithm 2.2)

Input:Given an N-polynomial f(z) of degree n over F,

Out put: The Complexity Cy of the N-polynomial f(z)

1) Set Cy =0

2) Setry(z) =z

3) Set ky(z) =z-mi(z) (modf(z))

4) Fori=2:n j

5)  Setr(a) = (ra())! (modf(z))

6) Setk(z)=z-n(z) (modf(z))

7) .End for

8) .Fori=1l:n : >

9) -Find solution T; = (£a,ta, ..., tm) of the linear equation system k;(z) = 7., tiymj(z)
10) Forj=1:n

11) dft; #0
12) -Set Cy =Cy +1 ; .
13) -End if

14) -End for

15) .End for

16) .Return C'y.

Remark Let f(z) be a N-polynomial of degree n over F, and a be a root off(:r) in Fp.
So N = {a.a.a?,...a” "'} is & normal basis for Fyx over F,. By (3). we know that the
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mmpiuityoff(:}ist.he uumbaofmduneaﬁtu-l such that

=Yg 18IS EF
=1

1<i calculate the unique :
= 'E?"(:") mod f(z) and = -ri(z) = ki(z) mod f(z). (We note that for computing t;;'s we
should calculate a¥™' and o'+, but =¥

Reducing module f(z) just hupn.hadqteemnuhh).

Thmdminedmut,,ef’,.suchm

k(z) =L tyrsls) 1Sisn
=

Thhinwlvunmndmmoouminsthemhhlnlchhseuﬁdmhofr’.lSiSmmd

:hmludltoshomopmusmumdnlimequm So lines 2 until 7 of Algorithm

leomputea"""“andu"'" module f(z) (or ki(z) and r;(2) respectively) for 1 €1,j <n,

that are necessary for computing (5)- Mnﬂnu!untill&uomputnhammberdnoum
dmu&;'l.mluﬂedln(ﬂ.

Example Cms.idm‘th—pobmnmial_f(x)=:'+z‘+z’+:+l over F;. We have

n(@) = z,m(z) = 2%, na(z) = #'.mu(z) = Btz =2+ +2 +1and k() =
2, k(z) = 2. ka(z) = 2 + 2 + 2+ 1L k(2) = 74 + 22, ky(z) = 2 + 2% + 1. So by (5) we

have

®)

tn:+t1,=’+tuz‘+t..(-.r'+=)+:“(=‘+:=+z’ +1) =2

or
tis + (tun +tyq)z + (b2 + ‘u)t’ + (tia + tm):l:J + (ha + f“)x‘ =3,

tg =0

tn + 1t =0
2 +lhs=1
ty+ths =0

tia +ty=0

g?ﬂ"ﬂl‘;&ve‘n =13 =ty =15 =0and t;3 = 1.
mulary“compuunlloft,,'s,mdwwehn\fetm =iy =ty =ty =y =ta=lg=
fs3 = tss = 1 and the others of t;;'s are equal to zero. Hence the complexity ol'f(:};:Cn:ﬁ.

structed by Theorems 1 and 2 for every &k 2 0. polynomials Fi(z) con-
Algorithm 2
Input:Given an N-polynomial P(z) = Lo ¢z’ of degree n over Fy.. integer k.
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Out put:Complexity Cy of normal polynomial Fi(z) constructed by Theorem 1.
1) Set Fo(z) = PL:I:}.
2) JTip(2)” =land T, =1
3) Form=0:k-1

1) Set Fyp41 =2 Fu(z +271).

5) -End for

6) -Set Algorithm 1 for f(z) = Fi(z) and p=2.
7) .Elseif

8) -Print(Theorem’s hypothesis is not satisfied)
9) .Endif =

10) .Return Cy

Algorithm 3
Input: Given an N-polynomial P(z) = Tz’ of degree n over Fy., integer k.
Out put: The complexity of normal polynomiels Fi(z) constructed by Theorem 2 .
1) .Set Fy(z) = P*(z).

2) I Trap(5ff —n) - Trap(2=t —n) #0.

3) Form=0:k-1

4)  -Set Fup = (2 +2+1)"7" Fu(H22).

5) -End for

6)  -Set Ga(z) =2"*Fu(2).

7) -Set Algorithm 1 for f(z) = Gi(z) and p=2.

8) .Elseif

9)  -Print(Conditions of theorem is not sstisfied)

10) .End if

11) .Return CN.

Some results of the above Algorithms in the following table is given.
s

Table 1: The complexity Cy of normal polynomials Fi(z) constructed by Theorems 1 and
2 for k < 8, with Fy(z) = 22 +z + 1 over F;.

S
e
o
~

k o D20k 3] 4 8
deg(Fx(z)) 48 )16 | 32 | 64 | 128 | 256 512
Cy/(For Fi(z) constructed by Thm1) | 7 | 27 | 115 | 479 | 2011 | 8247 | 32407 | 131155
Cn(For Fi(z) constructed by Thm2) | 9 | 25 | 97 | 453 | 1921 | 7941 | 32220 | 130465
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BrraECcAeHHE CAOKHOCTH HEKOTOPHIX DeKyPCHBHO
NOCTPOeHHEIX IOAMHOMOB

M. Axuzape
AHHOTAIHA
B 270it CTaThe Mbl NPEAAAraeM AATOPHTMBE! BHIYHCACHHA CAOKHOCTH HOPMAABHBIX

no.\;monon. NOCTPOEHHLIX ONPEACACHHBIMH PEKYPPEHTHBIMH METOAAMH.
3AKAIOMEHHH NpHBEAeHa TaGAHIA, KOTOPAs COAEPXKHT HEKOTOPHE Pe3yALTaThL.



