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! Abstract

The complex-classical short-range interaction Hamiltonian is used for the first time
for solving spin glasses with consideration of relaxation effects. A system of recurrent
equations is obtained on the nodes of the 1D lattice. An efficient mathematical al-
gorithm is developed on the basis of these equations with consideration of extended
Sylvester conditions which allows node-by-node construct a huge number of stable
spin chains in parallel. As a result of the simulation, distribution functions of differ-
ent parameters of & spin glass are constructed from the first principles of complex-
classical mechanics. Also, the critical properties of spin glass such as catastrophes in
the Clausius-Mossotti equation are studied depending on the external field. It is shown
that the developed approach excludes these catastrophes, which allows to organize con-
tinuous parallel computation based on the whole-range values of the external field. A
new representation of the partition function is suggested which, opposite to the usual
definjtion, is a complex function with the derivatives defined everywhere, including at
critical points.

1. Introduction

A wide class of phenomena which raise important and difficult calculation problems: in
physics, chemistry. material science. biology, nanoscience. evolution, organization dynamics,
environmental and social structures, human logic systems. financial mathematics, etc, are
mathematically well described in the framework of spin glass models [1, 2. 3, 4. 5, 6. 7, 8, 9].
In the literature. two types of mean field models have been developed. The first consists of
true random-bond models, where the coupling between interacting spins is assumed to be
independent random variables [10. 11, 12]. The solution of the model problems is obtained
by the n-replica trick [10. 12] and requires an invention of sophisticated schemes of replica-
symmetry breaking [12, 13]. In the second type models the bond-randomness is expressed
in terms of some underlining hidden site-randomness and is thus of superficial nature. It is
pointed out in works [14, 15. 16]. however. that this feature retains an important physical
ospect of true spin-glasses. viz. they are random with respect to the positions of magnetic
impurities. Recently it was shown that the eritical properties in some types of media can
be studied by the model of 3D spin glass on the scales of space-time periods of external
standing electromagnetic felds [17].
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js paper we discuss in detail the statistical properties of classical 1D spin glasses
.In zhzsmpw th:: intml:ti:;l between spins have a short-range character and lhzft the
e ‘Lsties o relax under the influence of an external field. Mathematically.
this problem in the framework of a complex-classical Heiseberg Hamiltonian, the
“w;lw hich i dmihrw&heideaol'chnical Newtonian mechanics generalization on
lassical trajectories [18, 19, 20. 21, 22]. On the basis of these investigations the
mc;upkx.,i -;Iussutti equation in external fields is generalized. Also. a new definition for the
mp:: partition function is suggested which is defined everywhere. including at critical
points.

9 Formulation of the Problem and Basic Formulas

Itiswulllmownthatiniwmpicmedjn{uw!llasinthecryﬂtahwilhcubicsym(ry} the

dielectric constant ¢, is well described by the Clausius-Mossotti equation |23]:

=1 4x 0,0
w+2 3 2 Nutm: m

where N® is the concentration of particles (electrons, atoms, ions, molecules or dipoles)
with given m types of polarizability and a?, is the polarizability coefficient, cotmpondmg]y
From this equation follows that the static dielectric constant e, depends on the polarizability
pmperﬁuufthapuﬁcluaswdluonﬁ:drtopolosiml order.

Taking into account the influence of the external electromagnetic fields. the equation for

the dielectric constant may be formally written as:

2A 4w

€ulB) = }1-"_'_—1\-(-%}. Alg) = -g[gl\'.ﬂn.‘f. + o(8)]- @
In (2) the symbol €,(g) designates the dielectric constant depending on the external field
parameters g = (£, ho), where Q and hg correspond to the frequency and amplitude of
the external field. In addition, if the medium can be represented respectively as a model
of disordered spin system (spin glass), then 2(g) designates the coefficient of polarizability
which is connected to the orientational effects of spins :n an external field. It follows from the
general considerations that we can simplify the problem and consider the spin glass medium
as an ensemble of 1D spatial spin-chains (SSCs) of certain length L, (see Fig. 1). The
coefficient of polarizability o(g) is the mean value of polarization of an ensemble per spin.
which should be complex in general and equal to:

=28, 5o~ [EOFEE  ReE<O )

where N, denotes the number of spins in the chain. E designates the complex energy of
the spin chain with the length L, with taking into account of relaxation effects. I'(E;g)
designates its distribution function on the ensemble.

Thus. our aim is to calculate the polarizibility coefficient p(g) with consideration of
relaxation effects occurring in a system of spins under the influence of external field.

We consider a classical ensemble of disordered 1D spatial spin-chains (SSC) with the
length L,. where for simplicity it is supposed that the interactions between spin chains
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are absent. Mathematically. spin-glass of this type can be described by the 1D Heisenberg
spin-glass Hamiltonian [1. 2, 3]:

N1 Ne—1
H({]’}; N.t) . Z Jii418:8u1 — Z: hiS;, {4)
=0 =0

where {r} = rq,r;... designates a set of spins’ coordinates: (r; is the coordinate of the i-th
spin), S; describes the i-th spin which is the unit length vector and has 2 random orientation,
Iy is the external field which is orientated along the axis z:
hi = hocos(kszi), z,=i-dy, ke=2w/Ls. (5)
In addition, J;s;; characterizes the random interaction constant between i and i + 1 spins
in (4) and can have positive as well as negative values (see [1, 4]).
For further investigations, (4) is convenient to write in spherical coordinates (Fig. 1):
Ne=1
H({r}i Nz) = = 3 {Jiss1[cos 41 cos(ipi — pisa) + tan Py sin ]
=0
+ ho cos(2mi/N,) tan 4} cos ;. (6)

4
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Figure 1: A stable 1D spatial spin-chain with random interactions and length L, = doN.,
where dp is the distance between nearest-neighboring spins, N, designates the number of spins in
the chain. The spherical angles g and vy describe the spatial orientation of the Sp spin, the pair
of angles (i2;, ;) defines Lhe spatial orientation of the §; spin.

Equations (6) for stationary points of the Hamiltonian will play a central role in the
consecutive calculations of the problem:

oH OH
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8, = (¥ ) are the nn;hsol’_t.he .
:::r:md ¢ the azimuthal angle). Using expression (4

i-th spin in the spherical coordinates, (v is the
) and equations (7), it is easy to find

the following system of trigonometric equations:
i' Jﬁmwv"mﬂ’lm&-m{\’t"ﬁ%)] +h; =0,
i1 wpht
E Jos cos ¥, sin(p, — @) =0 Joi = Ji. (8)
wmi=1; s

interaction constants Ji—yi. Jis+- as well as the angles (¥i=1: 9i=1): (¥4, 9¢) are known,
I:the ible t:nupliciﬂy u;c_:i:m x'l:a pair of angles {¥+1,9i+1). Correspondingly, the i-th
:;pi:gbeinthemmm if the following conditions are satisfied (Sylvester conditions)

at the stationary point 87 = (¥{,¢}):
Ay, .b,(e?) >0, At. L (e?) A\’-%(e?} - Aﬂd‘.w(e?) >0, (9}

where Amm[eﬁ — ouﬂﬂfa“?- And.{eg) = Aﬂ.a.(e?) = 8 Hyp/8a,88,, in addition:

Ave®) ={ ii Jislcos i, cos(ip, — f) + tan ¥ siny, ]+
T;o:s('?ﬁfN,) tanyf}cosyf,  Ane(8)) =0,

Aoa @)= 55 Jucont cos(in — ) cos¥l. &)
pemi=1; pghi

i 8) and conditions (9)-(10). we can calculate a huge number of stable 1D
lSJ;Cl;: :qhui:;io:hta.l?low invmiplins(th}; statistical properties of the 1D SSCs ensemble. It
is supposed that the average polarization (magnetization) of the 1D SSCs ensemble (polar-
izability of 1D SSC) is equal to zero in the absence of an external field.

Now we can construct the energy distribution function for the 1D SCCs ensemble subject
to external influence. To this aim it is useful to divide the dimensionless real energy axis
E into the regions 0 > Eg > ... > E,. where n >> 1. The number of stable 1D SSC
configurations with the length L, within the energy range 'E — JE, E + JE]. 6E < 1, will
be denoted by My, (E) while the number of all stable 1D SSC configurations by the symbol
M™ =51, My, (E;). Accordingly, the energy distribution function for the ensemble may
be defined by the expressions:

Fy, (E.g;do) = My, (E.8)/M[)". (11)
" (1]
Jim, 3 Fu, (. g:do)0E; = [ Fu, (B, do) dE = 1.
i=1 =
where the second equality is the normalization condition of the distribution function.
3. Solution of Equations for Stationary Points

Using following designations:

Eipr = cos ). Mat = 800w = is1 ) (12)



A. Gevorkyan and H. Abajyan 21

it is possible to solve equations (8) in an explicit form [24):
€ =Clhnzt,  nl,=C}AB™, (13)

where

A=}, c08 Y+ Ca+ 2C sin W[Cy £ \JJZ,, — C7 — CF cot ).
B = J}\,, cos' ¥ + 2C3J 3, cos? o + (C? + CF sin? y, )2,
Ci = Ji1 [sin ¥iy — tan ¥ cos i1 cos(ip; — @y_y)] + hocos(2mi/N,) cos ¥,
G = Jiricos i sin(ps — pi-1), Cy=—C2 + C2 sin? 4.

Let us recall that the analysis of equations (8) allowed us to find a new condition that the
spin-spin interaction constant should satisfy :

Jia 2C2+C3, (14)

which plays an important role in the further calculations,

In our recent work [17] we showed that even for weak external fields there arise such
values of polarization that lead to catastrophe in equation (2). In order to solve this issue,
it is necessary to consider relaxation effects occurring in a 1D SSCs ensemble under the
influence of an external field. Mathematically, consideration of a complex Hamiltonian can
be one of the effective ways to solve the above-mentioned problem. Note that the idea of
complex Hamiltonian is often used for solution of classical and semiclassical problems near
zero scattering angles [25]. In the specified cases the divergence problems are successfully
solved by using the so-called complex-classical trajectories. We consider that spin-chains,
as o matter of fact, are classical trajectories where the analogue of time is the sequence of
nodes. It is obvious that in a complex-classical trajectory (spin chain) it is possible to take
into account the relaxation effects in the spin system.

We thus propose that Hamiltonian (4) is a complex function where the constants J;i41
and angles between spins have complex values. The system of recurrent equations which
will allow calculate spin chains with consideration of relaxation effects can be written in the
following form:

Re{€l, - C}Ihin3) =0,

Im{&, - C}U iz} =0,

Re{i%, - C] AB"} =0,

Im{p}, -C}AB™"} =0,

Im {ﬁ;,m‘;m (6i41)} =0.

Im{’ihull-n (éf-vi}} =0,
Im{Jj\,, —Ci = Cf} = 0. (15)
Let us recall that all functions in (15) in the complex region are analytically extended: & =
g"+io!, where ' and o/ are the real and imaginary parts of the function. correspondingly.

Note that the first four equations in (15) are found from the complex extension of equations
(13) by separating the real and imaginary parts. The next three equations are found from
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: g shore of Sylvester conditions (9) and inequality (14). The
the aeroing cond e ?fmmnm pf::‘spins requires to satisfy the following inequalities:
Re {A;.2.(80) > 0. Re{Ass @) >0, Re{Jin-CG'-Gi}20.  (16)
X ith the constraint conditions of inequalities (16) allow conduct
e o[ﬁdm;mt?&h spin-chains with consideration of relaxation effects which
Mbemspiminﬁdethecmmmmionoﬁ}niﬂn-
freedom. Simulation of system (15) can be realized under various scenarios.
- cular, if we assume that relaxation occurs only between the spins in chains without
e S dwd&eﬂdom.thenthebﬁoﬁnswndiﬁoﬂmmbemhﬁd;
[ZA RS N L - (17

of freedom, obviously conditions (17) are not
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Figure 2: a) The distribution of the energy (for the real and imaginary parts, correspondingly)
of an ensemble consisting of 1D SSCs of the length L, = 25dg. b) The distribution of spin-
spin interaction constants (for the real and imaginary parts, correspondingly). These distributions
essentially differ from the Gauss distribution and correspond to the class of Lévy's alpha-stable
distributions [26].

4. Statistical Propertics of an Ensemble

We have investigated the behavior of the average value of the ensemble polarization depend-
ing on the external field. Using definition (3). we have calculated mean values of polarizations
;i,"’(-r) on all coordinates (7 = x.y.z). where the index (o = r.1) designates the real and
imaginary parts.
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Figure 3: In (a, b, c) self-similar curves of the real part of polarization are shown. In (d, e, f)
self-similar curves of the imaginary part of polarization are shown. Mean values of both the real and
imaginary parts of the polarization are strongly frustrated on all coordinates (z, y, z) depending on
the external field.
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Figure 4: In a curves of the real part of polarizations are shown on different coordinates (z. y. z)
alter averaging on the spin-chains ensemble and fractal structures. The usual Clausius-Mossotti
equation (2) (without consideration of relaxation effects) has a catastrophe (figure a) for two values
of external field (9g. 71). In b curves of the imaginary part of polarizations are shown after full
averaging by spin chains ensemble and fractal structures.
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erical simulation has shown that the mean vnluaof both the real and imaginary
‘,,,,T.h:;n.im h:i:uTiom are strongly frustrated [27] depending on the parameter . This
i ed;’:snotdhapwratpidmmwgmceofmm}?uwﬂm region. see Fig. 3 a, b,
= ingly. Fig. 3 . e / (imoginary part). Moreover. at each

¢ (real Pﬂ:‘;l:'lf i 'wdmmhmﬁwmmiﬁumiufmmc}wnﬂa.
W' I.Q.O;Mmmismmmwmehlbﬁngdmplermulx

Di() = In(n)/In(N), (18)

i ber of partitions of the structure size and N is the number of placing

:Ih:l: ﬂm:dm;t?m At the value 7 = 0.003 the dimensionality D! =~ 1.2005. Similar
calculations can be done for D{f), Di") etc. At increasing  all of them tend to the unit.

Taking into account the above-mentioned results, the average value of polarization (mag-

netization) is as follows:

<f() > % E“; B (n)- (19)

or the number of points at which the average value of polarization p{”(v)
?;,hu::;du:?:strhe ensemble of 1D SSCs spin chains) has an extremal value, where "€
[y =87+ &) & << 1, in addition, the angle brackets < . >denoteftachlawfnmf:&
ie. the arithmetic mean. As it follows from Fig. 4 a, b, the mean value of polarization
< () > has a set of phase transitions of first order depending on 7y after averaging on
&ml‘:timpom to note that in the system critical phenomena may occur connected with
catastrophes in the Clausius-Mossotti equation (2) (Fig. 4a) when the real part of the
denominator in the equation tends to one. The analysis of a large class of spin glasses
shows that catastrophes occur when the real part of polarizability coefficient connected with
orientational effects varies between g(7) o< 0.025 <+ 0.05 and the contribution coming from
relaxation effects is not considered in equation (2). After consideration of relaxation effects
which lead to formation of the imaginary part in the polarizability coefficient (see Fig. 4 b),
divergences in the Clausius-Mossotti equation (2) are completely eliminated. As is shown
on Fig. 4. the above-mentioned parameters are frustrated in other directions also where the
external field is applied.

Finally. we return to the definition of the main object of statistical physics, which is the
partition function. As is well known. for a classical many-particle system in the configuration
space it is defined as follows [28]:

2(0) = [exp(-BH({DMdruda.s = (20)

where kj; is the Boltzmann constant and T is the thermodynamic temperature. Anyway, the
number of integrals in expression (20) is very large as a rule and the main problem lies in
their correct calculation. However. in representation (20) the configurations of spin chains
which are not physically realizable do obviously contribute. Moreover. the weight of these
configurations is not known in general and it is unclear how it can be defined. With this in
mind and also taking into account the ergodicity of the spin glass in the above-mentioned
sense. we can define the partition function in the form:

Z.(J:N,,}=(fexp{ﬁH(E.p)}.F{&p;g.J\&]fE[p). RIE <. (1)
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where F(E.p;g. N;) is the distribution function of an ensemble., where p denotes polariza-
tion of 10 SSC which is complex. dp = dpdp{)dp(")dp'dpldp("). In addition. H(E, p)
designates spin chain Hamiltonian in the space of the energy and polarization. (E.p) and
symbol < ... > designates averaging by fractal structures like (19).

Thus, according to the new definition. the partition function is a complex function and
its derivatives have regular behaviors respectively at the critical points.

5. Conclusion

In order to solve the problem of critical phenomena in spin glasses under external fields,
we examined for the first time the possibility of its description in the framework of a com-

Hamiltonian, We have studied a short-range interaction model of the spin glass which
consists of 1D SSCs. We use the condition of stationarity point of the Hamiltonian on the
nodes, which allows find a system of recurrent equations (8) based on the fact that stable
spin chains are essentially classical trajectories, where the role of time in the context of
this problem is the sequence of nodes. These equations together with Sylvester conditions
(9) allow step by step construction of stable spin-chains as classical trajectories. The gen-
eralization of classical trajectories on the complex classical trajectories leads to a system
of equations (15) which satisfy inequalities (16). The solutions of equations (15) for both
angles and spin-spin coupling constants are complex since all parameters of the problem are
complex. As a result. it helps to avoid a catastrophe in equation (2) and build up a reliable
numerical algorithm for solving the spin glass problem taking into account relaxation effects.
The developed approach allows us to generalize the Clausius-Mossotti equation and makes
it suitable for qualitative and quantitative study of the behavior of the medium's dielectric
constant including the cases where critical phenomena occur in the medium.

Finally, it is important to note that the presented approach allows us to construct in the
framework of main conceptions of probability foundations a new correct form of the partition
function (21), which is a complex function with the derivatives that do not diverge at the
critical points.
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Twuwlwl uwhGwihG wwywihGspp hwlh weGjwd
nbijwpuwghnG GplnypGEpp
L Qlnpqyui L <. Upwewb

Udihniinud

Uwwnwlpmd  numdlwehpdwd b wponwphi npwynh wejwympjudp wwppp
bpYywpmpjudp 1D jhwpquinpiwd wwpwdwlwl uwhluwhG ynpwlbph (SUT) hunimyph
péwlugpuiwl hwwnynipymbGitpp® hwzdh wolbm] nbpwpuwghnG bplnypGhpp: Unweht
wigud ogquugnpdyby E  Yndwbpu-quuwlwl 2wihponGhwlp: Mwppbpuwi 1D
guligh hwlgmygGpnud unwgyty & nbympbin Gowlgmiwywihwiwl hunjwuwpmdGph
hwdwlwpgp, npnlp Uhpbunph wwjdwGibph htn dhwohG wiwihnhYnpbl zwpniGulp]oud
bl Yndybpu nmwpwdnipjub gk L hGwpwynpmpynil &6 wnwihu hwign)g wn hwiqnyg
huwzyby uwhGh mannpwdnipmbnp® hwyuh wnbbim] uwhGuwjhG znpwbpnul nhjwpuwghn
biplm jpGkpp:

Munuifwuhpdwd b6 Gwlk uwhbwihG hudnypmd mbnh mibgnn npozwyh Yphwhijwipwl
bplnyplbp, hGywhupp GG Ypwnmghmu-Unuunnhh (4-U) hwjwuwpdwl dbe wnbnGbpp*
yufuywd wpunwphl nwywh dhonpjmbhg:

Unwowplwd & Jhéwluwgpuljwl gmiwph Gop Ghplwjwgmyd Jbpguninp  pym|
plwnbtgpwiwihi wpnwhwjnmpjul wbupm]® tibpghwjh L plbnwglwdmpjul ww-
puwontpniinid;

KaaccruecKHe COHHOBEIE CTEKAA C YIEeTOM
peAakcanmMoOHHEX 3¢ deKToB

A. C. T'epopksH A. I'. AGapisaH
AHHOTANEA

B panHo# paGoTe MCCAEAOBaHLI CTATHCTHYECKMe CBOACTBA aHcaMOAA Heymnops-
AoueHABx 1D npocTpaHCTBeRHRIX cruH nenodek ([ICLI) c onmpeaeAeHHOR AHHOK BO
BHENIHEeM [TOAE C Y9eTOM peAaKCalMOHHEX 3((eKToB. AAf pelieHHs 3TOK NpobAeMEl
snepBele OGBIA MCIOOAB30BAH KODOTKOAEHCTBYIOMMH KOMIAEKCHO-KAACCHYECKHH
TFaMHABTOHHAH ¥ paspaboran 3¢)peKTHBHEIN MaTeMaTHYECKHH AATOPHTM, KOTOpLIH,
C y4YeroM pacllHDeHHBIX YCAOBHMA CHABBECTPA, NO3BOASET NapaAAEAbHO, Imar
34 UIArOM TOCTPOMTH GoAbmoe KoAHdecTBo crabuapeix 1D TICLL DyHkuux
pacnpeAeAeHHsA PA3AHYHBIX DapaMeTpoB COMHOBOIO CTEKAA NOCTPOEHh HAa OCHOBE
anaaMsa pesyAstaToB pacdera 1D TICLlancamGas. IlokasaHo, YTO pacnpeAeAeHHs
pasHLIX NApPAMETPOB COHHOBOTO CTEKAA NO-PasHOMY BeAyT cebs B 3aBHCHMOCTH OT
pHemHero nmoas. IlokazaHo, 9To 0606IEHHEIA KOMIAEKCHO-KAACCHIECKHH MOAXOA
HCKAIOY@EeT BO3MOJKHOCTh BO3HMKHOBEHHA KaTacTpod B ypasHeHMH Kaaysmyca-
MOCCOTTH, YTO MO3BOASET OpPraHM30BaTe HeNpephIBHEIE BLIYHCAEHMS Ha BCeM
HHTEpBAAe 3HAYEHHH BHEINIHEro MOAf, BKAIOUAA KpHTHYecKue Toukn. Ha ocHose
NPOBEACHHBIX MCCAGAOBAHKHA PEAAOIKeH HOBEIH, 6oAee TOTHEIA criocob NocTpoeHus
CTATHCTHYECKOM CYMMEI CHCTEME!, KOTOpas B OTAHUME OT OOLIYHBIX NPEACTABAGHHH,
ABASIETCH KOMMNAEKCHOA (hyHKumeid. CraTHCTHYeCKas CyMMa, H ee TpPOM3BOAHLIEe
AHAAMTHYHBI MOBCIOAY BKAIOYaA KPHTHYECKHE TOUKH.



