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Abstract

The statistical pzoi)erllu of ensemble of disordered 1D steric spin-chains (SSC) of
various length are investigated. Using 1D spin-glass type classical Hamiltonian, the
recurrent. Lrigonometrical equations for stationary points and corresponding conditions

for the construction of stable 1D SSCs are found. The ideal ensemble of spin-chains
is analyzed and the latent interconnections between random angles and interaction
constants for each set of three nearest-neighboring spins are found. It is analytically
proved and by numerical calculation is shown that the interaction constant satisfies
Levy's alphs-stable distribution law. Energy distribution in ensemble is calculated de-
pending on different conditions of possible polarization of spin-chains. It is specifically
shown that the dimensional effects in the form of set of local maximums in the energy
distribution arise when the number of spin-chains M << N (where N; is the number
of spins in & chain) while in the case when M o< N2 energy distribution has one global
maximum and the ensemble of spin-chains satisfies Birkhoff’s ergodic theorem. Effec-
tive algorithm for parallel simulation of problem which includes caleulation of different
stalistic parameters of 1D 8SCs ensemble is elaborated.

1. Formulation of the Problem

Let us consider classical ensemble of disordered 1D steric spin-chains (SSC), where it is
supposed that interactions between spin-chains are absent (later it will be called an ideal
ensemble) and that there are N, spins in each chain. Despite some ideality of the model it
can be interesting enough and rather convenient for investigation of a number of important
and difficult applied problems of physics, chemistry. material science. biology. evolution
organization dynamics. hard-optimization, environmental and social structures, human lo;ié
systems. financial mathematics etc (see for example [3. 5. 4. 6. 7. 8]). As was shown by
authors spin-glass model can be used for investigation of media's properties on scales of
space-time periods of an external fields at conditions far from & usual equilibrium of media

Mathematically mentioned type of ideal ensemble can be generated by 1D Heisenberg
spin-glass Hamiltonian without external field [1. 2. 3]: ;

Ne=1
Ho(N,) == Y Jius1SiSisa- (1)
1=l
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where 5, describes the i-th spin which is a unit length vector and has a random ori-
entation. In the expression (1) Jiis characterizes & random interaction constant be-
tween @ and i + 1 spins. which can have positive and negative values as well [10]. [g].
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Figure 1: A stable 1D steric spin-chain with random interactions and the length of L.. The
spherical angles w and ¢ describe the spatial orientation of So spin. the pair of angles (i)
correspondingly defines the spatial orientation of the spin S, the distance between two neighboring
spins in 1) lattice is dp. '

In other words we consider the mathematical model of spin-chaius ensemble where every
spin-chain is like a regular 1D lattice with the length L, = dyN,, where spins are put on
nodes of Jatlice and interactions between them are random (see FIG 1).

The distribution of spin-spin interaction constant W (J) is chosen from considerations of
convenience and 35 a rule it is a Gauss-Edwards-Anderson model [10] (see also [1]):

& 1 (I =)’
o= el )

where Jo = (J),, and (AJ)? = (J2),, — (J)2..
Let us recall that Jp and AJ for this model are independent from the distance and scaled
with the spin number N, as: :

(N =Jox NJ'."  AJox NIV2, (3)

in order to ensure a sensible thermodynamic limit. (...),. in Eqs. (2) and (3) describes the
averaging procedure. Below we will investigate the issue of how much lawful the choice of
this model is.
For further investigations it is useful to rewrite the Hamiltonian (1) in spherical coordi-
nates (see FIG 1): -
N.—1
Hy(N,) = — § Jii41[cos ¥ cos iy eos(2; = 1) + sin v, sin Vis1]. (4)

(2)
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A stationary point of the Hamiltonian is given by the system of trigonometrical equations.

OHy _ % = 0. (5)
e~ e 20,

1 i dinates system (¢; is a polar
©, = (. ;) are angles of i-th spin in the spherical coor )
:nh;l:. is' an(fz:in’f:ujt.hal angles), © = (8, ©3....6n, ) respectively describe the angular part

i in configuration. .
ﬁaNﬂmgprﬁm (4) and equations (5) it is easy to find the following system of

trigonometrical equations:
$ Jlsinh, — tan v cos g, cos(; - 2. = 0,

i=1; wghi

i+l

2 Jui cos i, sin(igi — @) = 0. Ji = Jiy. (6)
wemi=]; pybi :

In case all the interaction constants between i-th spin with its nearest-neighboring spins
Jitis Jisss and angle configurations (Yi—1, @i-1), (¥, 1) axe kifow‘n. it ls-pmb?,e to gxp[i?.
itly calculate the pair of angles ;41 = (i1, @ir1)- Carrespnndu:fgly. the s—lbh spin will be in
the ground state (in the state of minimum energy) if in the stationary point e? = (v%, ")
the following conditions are satisfied:

Apiws (9?) >0, Aypivi (e?) Awqw{e?]' =% Aim(e?) >0, (7)
where Ag o, (69) = 8 Ho/00}. Aa,p,(8f) = Apa,(6]) = 8*Ho/0a;00;, in addition:

Apn,(6) = { E Jyilcos b, cos(, — ¢f) + lamb?ain%]} cosy?,

p=i=1; pghi
i+l
Apy,(6]) = { 2. Jvicosy, cos(p, —w?l}cosud?.
e Y 1]
1
Ay, (€)) = { Z Jui cos , sin(ip, — 97) }sin . (8)
pemi=1; prd

Taking into account the second equation in (6) we can reduce condition (7) to the fol-

lowing kind:
A, (69) >0, A, (87) > 0. (©)

So. with the help of Eq.« (6) and conditions (9) a huge number of stable 1D SSCs may be
calculated and on its basis it is possible to further construct the statistical properties of 1D
S8Cs ensemble. It is important to note that the average polarization of 1D SSCs ensemble
is supposed to be equal to zero.

Now we can construct the distribution function of energy in 1D SCCs ensemble. To
this effect it is useful to divide the nondimensional energy axis ¢ = ¢/de into regions 0 >
& > ... > 5. where n >> 1 and ¢ is a real energy nxis. The number of stable 1D SSC
configurations with length of L, in the range of energy [¢ — d¢.2 + §2] will be denoted by
M, (¢) while the number of all stable 1D SSC configurations - correspondingly by symbol
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M™ = T2, My, (¢;). Accordingly. the energy distribution function into the 1D SSCs
ensemble may be defined by expressions:

Fy, (€:do(T)) = My, )/ ML". (10)

where distribution function is normalized to unit:
" (/]
Jim 3 Fi (2 do(T))oey = [ Fi,(eidofT))de = 1.
=1 S

In similar way we can define also distributions for polarization and for a spin-spin interaction
constant.

2. Algorithm of 1D SSCs Ideal Ensemble Simulation

Now our aim is elaboration of algorithm for parallel simulation of ideal ensemble of 1.D SSCs.
Using equations (6) for stationary points of Hamiltonian Hy(NV,) we can find the following
equations system:

Ji-1i[sin -1 — tan i, cos ¥ cos(; — @i-1)] + Jiwalsin ¥
— tan 1 cos ;45 cos(i; — pis)] =0,

Jio1i cos -y sin(p; — @i—1) + Ji1i co8 W4 sine; — i4q) = 0. (11)
After designations:
z=cosW41, Y =sin(@ — i), (12)
the system (11) may be transformed to the following form:
(o)) +Jm;|v‘1-—x°—r.n.n¢qz\/l-y’]=0. Co+ Jizy=0, (13)

where parameters C; and C; are defined by expressions:

Cy = Ji-ylsin iy — tan ¥, cos i cos(p; — ©i-1)):
Cz = Jiy i co8 ;-1 8in(2; — @i-1). (14)

From the system of equations (13) we can find the equation for the unknown variable y:

Ciy+ Cay/1 = Ptany; + /I 2 = €3 =0. (15)
We can transform the equation (15) to the following equation of fourth order: ..
[A? + 4CICE sin i Jy* — 2[ACS + 2C,C2sin® Yly? + CF = 0. (16)

where
A =J%, cos’ ¢, — CF + Cisin’ . (17)

The discriminant of equation (16) is equal to:
D = Ci(A + 2C, sin® §,)? — C}(A? + 4C}C3 sin? v
= 4C3C? sin® (A + Cisin® ¥, — C3).
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From the condition of nonnegativity of discriminant D > 0 we can find the following condi-

tion:

i A+Clsin’ ¥ — C3 20. (18)
of A from (17) into (18) we can find the new condition to
between two successive spins should satisfy:

B 20+ . (19)
can write the following expressions for unknown variables x and y:

Further substituting the value
which the interaction constant

Now we
== 6
s Tnt®’
C,‘ws’\h.!?,ﬂ izclﬁm\”i“f’i\lﬂm—C?—Cg+ca+2ci‘sin3wi i
e L e =T P BT e )
where Cs = —C} + C} sin® Y.
Finally taking into account designations (12) we can find new conditions of restriction of the

calculated angles (i1, Yis1):

These conditions are very important for elaborating a correct and effective algorithm for
numerical simulations.

2..1 Algorithm Description

This is the parallel algorithm for simulation of 1D SSCs ensemble, which consists of sep-
arate iterative calculations of nodes in 1D SSC. The first and second nodes are initialized
randomly, then i-th node is obtained from (i — 2)-th and (i — 1)-th layers nodes. Every node
contains the following information:

¢>-polar angle.

y-azimuthal angle,

J-interaction coefficient,

The following parameters are initializes in the following way:
wp and ¢ - rand()*2°n"R;
1o and Y4 - acos (rand());
Joy - rand();

@ ;;hem rand() function generates uniformly distributed random numbers on the interval

The also}'ithm pseudo-code is following:
!/ [Eenerat.e nvsepnrn.t.e independent sets of problem in parallel
ri=1:N.
for j=1:R /[ regenerate J; maximum R times if needed
for k=1:L; [/ go through all elements in the i-th layer if conditions
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// (9) are satisfied

begin
// calculate energy on i-th layer.
/[ calculate polarization on z.y and z-axis
// caleulate 7,y and y.q,
// save J; value
end
endfor
endfor
endfor
if (i == N;) // reached the N -th layer
begin
// save energy. polarizations values
and
endif

// construct distribution functions of energy &, polarization p and
// interaction constant J

/[ calculate the mean value of energy £, polarization . interaction constant J and
// its variance J2.

3. Numerical Simulation

We will consider an ideal ensemble of 1D SSCs which consists of M number of spin-chains
each of them with the length 25do. For realization of parallel simulation we will use algorithm
A (see FIG 2).

The parollel algorithm works in the following way. Randomly M sets of initial parame-
ters are generated and parallel calculations of equations (20) for unknown variables  and v
transact with taking into account conditions (21). However only specifying of initial condi-
tions is not enough for solution of these equations. Evidently these equations can be solved
after definition of the constant Jo;, which is also randomly generated. Providing solutions
are found then conditions of stability of spin in node (9) are checked. The solution pro-
ceeds for the following spin il the specified conditions (9) are satisfied. If conditions are not
satisfied, a new conslant Jy, is randomly generated and correspondingly new solutions are
found which are checked later on conditions (9). This cycle is repeated on each spin until
the solutions satisfy to conditions of the minimum spin energy in the node.
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Figure 2: The algorithm of 1D SSCs of ideal ensemble parallel simulation of statistical parameters.
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Figure 3: The energy distribution where there are apparently many local minimums of energy
for ensemble of 10 SSCs with the length of L, = 25dg, which consists of 10° spin-chains (the left
picture). On the right picture polarization distributions of ensemble on coordinates z.y and z are
shown.

At first we have conducted numerical simulation for definition of different statistical
parameters of the ensemble which consists of 10° spin-chains. Let us recall that the number of
simulation of spin-chains define the number of spin-chains in the ensemble. As the simulation
shows (see the left picture in FIG 3) the energy distribution function has a set of local
maximums ({9, ....™), Obviously they are dimensional effects and are similar to the
first-order phase transitions which often happen in spin-glass systems [1)).



A. Gevorkvan. H. Abajyen and H. Sukiasyen 93

Bar —— - 51

._- pularization_x
FrE) Fip) polarization_y
' paolargation_z -——

LE cx

1
[ ¥} sz =1

{5

| & »

] o i PRy

( Pk | i
] i irll!l.,}] llhf;,r

[
0L TR (e
ﬁ'\ ﬁ» ﬁf,‘ ) ‘m{‘.

Ji 4\
e - _-'?‘j ! A } i‘:
W A |

s Ap

ol L

- .48 3 0 & 2, % 8 & ] 4 4 4a a 4 ] L] 2 L ] “ L]

3
£

Figure 4: In the left picture it is shown the energy distribution in the ensemble of 1D SSCs
with the length of L, = 25dg, which consists of 2-10° spin-chains. Apparently, the number of local
minimuims of energy is promptly reduced comparing with the increase of spin-chains. On the right
picture polarization distributions of ensemble on coordinates x,y and z are shown.
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Figure 5: ‘I'he energy distribution and its fitted curve (left picture) in ensemble of 1D 85Cs
with the length of L, = 25dy. which consists of 107 spin-chains. Evidently there is only one
global inaximum for energy distribution. In the right picture polarization distributions are shown
correspondingly on coordinates z. y and z.
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Figure 6: The energy distributions for ensembles consisting of 1.0 SSCs of the length L, = 25dp,
with spin-chains polarization correspondingly up to 20, 40 and 100 percents (left picture). Note
that all the ensembles consist of 10* spin-chains and their distributions practically do not differ.
On the right picture the distribution of the spin-spin interaction constant is shown which differs
"' essentially from Gauss-Edwards-Anderson distribution model (2)-

Let us note that during simulation we suppose that spin-chains can be polarized up to 20
percent i.e. the total value of spins sum in each chain can be in an interval of —5 < p < 5,
where p designates the polarization of spin-chain. In other words each spin-chain is a vector
of certain length which is directed to coordinate z. As calculations show, in the ensemble
consisting of a small number of spin-chains, for example. of the order 10, the self-averaging
of spin-chains does not occur in full measure i.e. the total polarization of an ensemble differs
from zero: p, = —0.33099, p, = —0.085191, p, = —0.024543 where p = [ F(p)dp, where
it is supposed that p = (ps, Py, p:). In this case the average energy of an ensemble is equal
to &= —14.121, where & = &F(E)Ede.

For the ensemble which consists of 2.10° spin-chains (see FIG 4). the dimensional effects

practically disappear. The summary polarization of .ensemble in this case is very small:
p. = —0.020538, p, = —0.047634. p, = —0.12687 and correspondingly the average energy of
1D 8SC is equal to & = —13.603.
Ensemble which consists of 10* spin-chains has an energy distribution F(e) with one global
maximum (see Fig 5). As to polarization distributions. F(p.) F(p,). and F(p,). in the
considered case are obviously very symmetric in comparison with similar distributions of
previous ensembles (see FIG 3 and Fig 4). The average values of polarizations on coordinates
for this ensemble are much smaller p, = —0.0072863. p, = —0.014242, p, = —0.018387,
correspondingly the average energy is equal to £ = —13.634. Thus in the case when ensemble
consists of a big number of spin-chains, the self-averaging of spin-chains system occurs with
high accuracy. Whereas the summaltion procedure on the number of spins in chain or spin-
chains ensemble is similar to the procedure of averaging by the natural parameter or “timing”
in the dynamical system. it is possible to introduce the concept of ergodicity for the both
separate spin-chains and ensemble as a whole.

Thus as calculations show Birkhoff ergodic hypothesis [11] may be used for ensembles
which consist of M ~ N? spin-chains in order to change the summation of spin-chains on the
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integration by Lhe energy distribution of the ensemble. The energy distribution of ensemble
tioes not depend on the length of the spin-chain in the limit of ergodicity and it can be fitted
very precisely with Eclart function [13] (see FIG 5). the smooth

a Er
brei | (e e ) (22)

F(z) = Cla.b, c,-,){

where a.b, ¢ and ~ are some constants, in eddition C is a normalization constant and can be

found from the condition:
fo{ajda=3. (23)

By placing (22) into (23) we can find:
9.
2by

Afer fitting the energy distribution by means of analytical function (22) we find values
of constants by entering into the function: a = 131.4, b = 3138.2, ¢ = —1.20344 and
4 = 0.162174.

We have also calculated 1D SSCs ensemble with the length of spin-chains 25d, and
correspondingly with polarizations of spin-chains up to 20. 40, and 100 percents (see Fig 6,
the left picture). In particular, as it follows from the picture the energy distribution does
not depend on the degree of spin-chains polarization. We also have conducted simulation
of ensembles which consist of spin-chains with lengths 100d; and 1000d; correspondingly.
As the numerical modeling shows, statistical properties of ensembles are similar. In the
considered ceses distributions of energy concentrate correspondingly on scales 100d; and
1000d,. Limits of ergodicities of ensembles are also investigated and it is shown that in these
cases too it is of an order N2.

Finally it is important to note that the distribution of spin-spin interaction constant is
not defined apriori with the help of expression (2) but with the mass calculations of equations
(). On the basis of the obtained numerical data. the distribution of interaction constant
W(J) = F(J) is constructed (see Fig 6. the right picture) from which it follows, that it
essentially differs from the Gauss-Edwards-Anderson distribution model (2). The obtained
distribution relitively is well fitted by the normalized to the unit of nonsymmetric Cauchy
function [14):

Ca.b.c,7) = = Inf1 + b) + % (24)

il g+8J
PO = ey

where g, f and ag are some adjusting parameters which are found from the condition of a
good approximation of the data visualization curve. In the considered case they are cor-
respondingly equal to: g = 0.27862, § = 0.009 and ap = 0.083236. Nevertheless, as the
detailed analysis of curve of numerical data visualization shows (in particular its asymp-
totes) the distribution of interaction constant can be approximated precisely by Levy skew
alpha-stable distribution function. Let us recall that Le¥y skew alpha-stable distribution is
a continuous probubility and a limit of certain random process X (e, 8, 7. 6; k) where param-
eters describe correspondingly: an index of stability or characteristic exponent a € (0; 2. a
skewness parameter 8 € [~1;1]. a scale parameter v > 0. a location parameter § € R and
an integer k shows the certain parametrization (see in more detailed references |15. 16]). Let
us note, that the mean of distribution and its variance are infinite. However. taking into

(25)
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action constant has limited value in real physical systems, it is

account that spin-spin inter O 1 wirtinia T paiAslar I J € [=5, +5] then

ible to calculate distribution
7 = 050113 and J2 = 2,1052,

4, Conclusion

i igati statistical properties of classical spin-glass system of various sizes is very
E:;olft‘::lg l:;diismdins possibilities of effective _inﬂuenoe and control over parameters
of medium with the help of weak external felds. Evidently, when we put the spin-glass in
external field the space-time periods define scales on w_hlch probably an essential changes in
medium occur. For simplicity we suppose that the spin-glass system is an ens?mb.le which
consists of disordered 1D steric spin-chains of Ls lenst‘-hs. between n:hmh mteru.ct:_on is absent
(ideal ensemble). This type of classical ensemble is described by Heisenberg Hm'n.l.ltonjan-(?),
We have researched conditions of arising of stable spi.n—ch.aim Eqgs. (11) and nonequalities
(9) and found a latent connection between random variables (see expression (19)), which
shows that the distribution for spin-spin interaction constant can not be described by Guss-
Edwards-Anderson model. In the result of the analysis of stationary points equations (11)
we have found the system of recurrent equations (20) and new conditions (21).. On-tha basis
of obtainied mathematical formulas the effective parallel algorithm for numerical simulation
is developed which was realized on the example of the ensemble which consists of 1D SSCs
with length 25d,. Similar to the dynamical systems, we have introduced the idea of Birkhoff
ergodic hypothesis [11] for the statical spin-glass systems. In this case the number of spin-
chains of ensemble plays a role of the natural or "timing” parameter of the system. Numerical
simulations show that the ergodic hypothesis may be used for the case when ensemble consists
of M < N? apin;oliaij:a in order to change the summation of spin-chains on the integration
by the energy (polarization, etc.) distribution of the ensemble. :

In particular, we have made numerical experiments for ensembles which include 107,
2-10° and 10 spin-chains. As it was shown by simulations in the case when M < N?
for an ensemble, they are characteristic dimensional effects in energy distribution (the left
picture on FIG 3). When the number of spin-chains is M of order 2 - 10° or more 10¢,
dimensional effects disappear and correspondingly energy distribution functions have one
global maximum (see left pictures on FIG 4 and FIG 5). As it was shown, when increasing
spin-chains number. the total and partial polarizations of the ensemble disappear. Let us
note, that at modelling by algorithm (see scheme on FIG 2) condition (19) specifies the region
of localization of random interaction constant J;;41 which depends on angular configurations
(i — 1)-th and i-th spins and interaction constant J;_;; between them. As a result. it allows
to accelerate calculations of each spin-chain and hence the speed of parallel calculations of
ensemble is increased essentially.

Finally it is important to note that it is proved, that the spin-spin interaction constant
Ji41 has a form of Lety skew alpha-stable distribution (see the right picture on FIG 6). The
considered scheme of solution of 1D steric spin-glass problem can be used in different applied
fields (see e.g. [17]). It can also be useful for analyzing 3D spin-glass problem and creation of
an effective parallel simulation algorithm of the spin-glass system with large dimensionality.



A. Gevorkyan, H. Abajyan and H. Sukiasyan a7

References

[1] K. Binder and A. P. Young. “Spin glasses: Experimental facts. theoretical concepts.
and open questions”, Rev. Mod. Physics. vol. 58, no. 4, pp. 801-976, 1986.

[2] M. Mézard. G. Parisi. M. A. Virssoro.Spin Glass Theory and Beyond.World Scientific,
Singapore. 1987.

[3] A. P. Young (ed.). Spin Glasses and Random Fields. World Scientific, Singapore, 1998.

[4) R. Fisch and A. B. Harris. “Spin-glass model in continuous dimensionality”. Phys.
Rev. Let.. 47, p.620. 1981.

[5] A. Bovier, Statistical Mechanics of Disordered Systems: A Mathematical Perspective,
Cambridge Series in Statistical and Probabilistic Mathematics, p. 308, 2006.

[6] Y. Tw, J. Tersoff and G. Grinstein. Structure and Energetic of the Si and SiO; Inter-
face”, Phys. Rev. Lett.. 81. p. 4899, 1998,

[7}) K. V. R. Chary, G. Govil. “NMR in Biological Systems: From Molecules to Human",
Focus on Structural Biology 6. Springer. p. 511, 2008.

[8] E. Baake, M. Baake and H. Wagner. “Ising Quantum Chain is & Equivalent to a Model
of Biological Evolution”, Phys. Rev. Let., 78(3), pp. 559-562, 1997.

[9] A.S. Gevorkyan et al.. “New Mathematicel Conception and Computation Algorithm
for Study of Quantum 3D Disordered Spin System Under the Influence of External
Field”, Trans. On Comput. Sei., VIL. LNCS 132-153. Spinger-Verlage, 10.1007/978-3-
642-11389-58.

[10] 5. F. Edwards and P. W. Anderson. Theory of spin glasses, J. Phys. F 9. p. 965. 1975.

[11] J. von Neuman, “Physical applications of the ergodic hypothesis, Proc. Nat. Acad.
Sci. USA, 18(3): pp. 263-266 (1932).

[12] G. D. Birkhoff, “What is ergodic theorem?", American Mathematical Monthly, vol. 49.
no. 4, pp. 222-226, 1931.

[13] 8. Fliigge, Practical quantum mechanics I, Springer-Verlag, Berlin-Heidelberg- New
York, 1971. i

[14] M. R. Spiegle. “Theory and problems of probability and stochastics”, New-York,
McGraw-Hill, pp. 114-115. 1992, :

[15] L. Ibragimov and Yu. Liunik. Independent and Stationary Sequences of Fandom Vari-
ables, Wolters-Noordhoff Publishing Groningen, The Netherlands. 1971.

(16) J. P. Nolan. “Stable distributions: models for heavy tailed data (2009-02-21).
en.wikipedia.org/Stabledistribution.

[17) H. G. Katzgraber. A. K. Hartmann and A. P. Young. “New insights from one-
dimensional spin glasses”. ArXiv:0803.3417v1 [cond-mat.dis-nn]. 2008.



08 Statistical Properties of Ideal Ensemble of Disordered 1D Steric Spin-Chains
brtwpuiui 1D wwpwdwlwb Jqupguynpjud
uuhG-znpwlbph hwdnyph UhSwlwgpuljul hunnlnmpniGGLpp

(L. QLopgyuC, . Upugyul L &. Umphwujwi

Odihmpoud

UzfuwinwGpmd nwniifwuppwd b6 wnwppbp bpywpmpyudp hpbwpului 1D mwa-
pudwlub sywpguifnpyud uwhl-znpwltph hudnyph (8.2.%4U.C.4) dhSwhugpuiwi
hunympjmGibpp: Oquuugnpdbm] 1D uhl-wuwlyh whwh quuwiwi budhponGhwdp,
qulyby b0 wnwghnlwp Ybwh phyniphbin bowGigmGwsmuthwiuG hujwuwpnuiGipp L
hufwwyunnwufuwl uw yiwGGbp* 1D juymb 8.2.%U.C.L Juemghim hwiwnp: JYhpnogdby
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