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Abstract

The present paper is devoted to critical risks of collective insurance models with
negative insurance payments (connected with contracts with usual life rent). Limit the-
orems arisen in critical situations are represented and the dual Laplass-Stiltjes trans-
farmations are found for critical risks erisen in collective Insurance risks models with
negative insurance payments. The specifications of the considered collective risk model
and the adaptive control strategy for multiperiodic insurance risk model introduced by
Melinovskil is illustrated.

1. Introduction

We examine the critical risks and its Dual Laplace-Stieltjes transformations (LST) of the
long term collective risk model of an insurance company conducting purely rent operations
(see [1]).

The insurance industry is subject to intensive regulation. Supervision authorities watch
compliance with the regulatory principles designed to balance the solvency and equity re-
quirements. According to the regulatory principles, each insurer must report his financial
position yearly or even more often. if required. The insurance process is viewed therefore as
a series of successive insurance years. Each year starts with a manager’s control interven-
tion which fine-tunes Lariffs. reserves, ruin probability and other operational characteristics
of the probability mechanism of insurance. Its influence remains in force throughout the
whole insurance year, i.e.. until the next report and subsequent control intervention. The
insurance regulation and supervision would be blind without a comprehensive model. or a
sel of models, describing the probability mechanism of insurance within an operating period.
Suitable is the Lundberg’s collective risk model which considers the net result of the risk
business of an insurer from the position of a “remote observer. and is often named the main
achievement of the 20-th century risk theory. The ruin probability in case of the negative
insurance payments, at the first time was studied by Saxen ([2]. [3]) and Arfwedson ([4]).

The financial risk and danger of ruin exist for any company. Risk estimation is a basis
of decision-making. In actuarial science the important place is occupied with methods of
construction of models of risk.

The background of the present paper is a general multiperiodic controlled risk model
introduced in Malinovskii in 2003 (see [5]. [6]). The trajectory of a general multiperiodic
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insurance process with annual accounting and subsequent annual control may be diagra
as
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According to this diagram (for k = 1,2,...). at the end of (k — 1)-th year the state “.‘“;‘ib;”
wy-1 I8 observed. It describes the insurer's position at that moment. Then, at the beS“L g
of k- th year the control rule 4 is applied to choose the control variable ttx—;- ".['hercf 1::
the k- th year probability mechanism of insurance unfolds; the transition function of tiis
mechanism is denoted by m. It defines the insurer’s position at the end of the k- th year.

The annual probability mechanistus of insurance are modeled in this paper by means of
the Polsson process and process with heavy tail distribution functions (DF).

The insurance company provides its clients with regular premiums which decrease the
reserve at rate'c < 0. Without loss of generality, we assume that ¢ = —1. The events of
client deaths or contract interruptions follow at random moments {ti }:’ . Each such G‘I'E:‘Ih
increases the reserve of the company by the amount of the unpaid parts of rents {Xi}iZ,
which are positive. independent and identically distributed random variables (RV) with DF
F, (F(z) = 0, z < D) and with the mathematical expectation a > 0. We assume that
the moments {t,};%, form a Poisson point process of intensity A. The insurance amount
S() = X  Xi which the company receives in the time interval (0,u), is o generalized

0st,Sw
Poisson process with the intensity A and jump DF F. i. e.
0 G —Au n
P{S)<z}=Y -’-—n(;‘ﬂ-Fm (z),z >0,
n=0 -

where F™ is the n - th convolution of the DF F (F (z) =1, when z'> 0, and F* (z) =0,
when z < 0).

The average sum of “payments” (“profits”) (see [1). [ & = Aa in unit of time (the
Insurance premium [8]. [9]) we call loading of the company [10]).

When p, is fixed. usually, at a risk estimation the central limit theorem is used. In
duration of time loading, and therefore: the risk can reach their critical values. The critical
value of loading py is the speed (c=-1Y of reduction of reserves of company. It is called the
gross insurance premium in unit of time (see [8]).

The reserve of the company at the moment t is z—t+ 8 (t). where z is the initial capital.
can become negative at some time 1noment giving rise to a situation of ruin for the company.
Event {z —t + S (t) < 0} is called. “ruin” (see [11}). but we will call it "ruin situation”.

Let 7. is the first moment of the ruin situation. ie. T, = inf {t:x—1+5(t) <0.
0<t<ooland 7, =co.if z—t+S(t) >0 forall t >0 (see [1]). Denote r () =niu§JC[u)

sodyw o;up ¢ (u). where {(u) = u = S (u). For company not to be in ruin situation in
MR

the time interval (0.2]. it is necessary that ¢ (u) > z. u € (0, t]. The form of the trajectory
€ (u) is represented on Fig. 1.
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Fig. 1 Process u— S (u).

The specialist badly familiar with the theory of risks and elementary probability the-
ory may think that at the moment T, the insurance company will really be ruined and
process € () should be stopped in this point. But it is not so, since T; is & random pro-
cess and it can accept any positive values with some probability. Even if it is known that
P{T. =t,, t, = comst} = 1 it does not mean that the company will be ruined in the moment
{,. Besides, the term “ruin” in the risk theory carries technical sense (see [12]) and does
not mean the valid ruin of the company'. The probability of ruin is a measure. i.e. some
analytical indicator measuring risk of insurance operations (see [12]).

The absence of the percent factor in collective risk models is the cause of arising of
possible ruin situations. Here risk depends on the intensity of insurance events and on
the jump of “insurance payments”. In duration of time intensity of insurance cases or
jumps of “insurance payments” can increase. In such situations applied methods of an
estimation of risk are unsuitable. Even in case of normal Gaussian approximation there are
also some disadvantages. The normal Gaussian approximation can be used only in case of
existence of the second order moment of the RV. Besides transformations of centralization
and normalization are saving the asymmetry (i.e. if the initial distribution of the RV is
asyminetric (sce Fig. 2), then after the transformations of centralization and normalization
the asymmetry will be saved (see Fig. 3)). Therefore there will be great errors in that
approximation.

Fig. 2 Histogram of initial data.

"The term -ruin” in the risk theory has arisen historically and precisely this event would be named for
example. “deficiency . Insufficiency of a reserve does not mean ruin of the insurance company in sense of
stopping of its operations or bankruptcies; the term “ruin” of the theory of risk should be understood as
technical. If the balance of reserve fund is negative. it yet does nol mean negativity of balance of the company
as a whole as the company can have other sources of repayment of deficiency (for example, own means. loans,
etc.). On the other hand. even at positive balance the company can experience financial difficulties if the
part of actives in which the reserve fund is laid out. has low liquidity (the real estate objects, precious metals
and 5o forth). Thus. it is not necessary to mix ruins probability with probability of illiquidity (see 12)).
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Fig. 3 Histogram of transformed data. e
In such situations the problems are arising for approximation by means of non symm o
distributions. The distributions of that type are for example the stable dtstrlbfl:l:‘:;L 53
the distributions belonging to the domain of its attraction, which have the fat-tailed
and the finite moment of the order ~ € (0.2]. DFs of those laws have heavy tails, ¢ are
satisfing to the following generalized condition of great risks:

1-F@) ~ A0 ) 2 04> 01 <52, M

where T'(s) - is the Euler's Gamma. function and L (z) > 0 Is the slowly varying function
(SVF) in infinity?.

2. The Statement of the Problem.

Processes of risks are r (£) and r. the DFs of which we denote by W (t. z) and W (z) corre-
spondingly. These probabilities are the risks of the insurance company. i

By saying “ctitical risk” we understand the following existing nondegenerate limit DF
LW (gf5) = Wo(@). ImW (t.5fy) = Ws (z) and W (t. ;) = Wi (2), (¢ = const).
z > 0, where (p. ) means that p = |1 — p;| — 0 and ¢ — +o0 jointly so that ta (p) .-*T-U<
7 < 0o at normalization coefficient 8 (p);=3 0 and existence of some a (p);=30. It is proved

o [ ), () =owrd ) ~w.
(see [7]), that such o (p) exists alp) = Bé(p)'L (ﬁ) ) w=0(0(p))-
where B = AA. :

In [7] the existence of DFs W, (z). W (z) and W, () in precritical (o, T 1) and posteritical
(g1 1 1) situations is proved under the condition (1) of great risks.

The importance of the application DFs with heavy tails at the analysis of rare catas-
trophic events is also noted in [13]. [14]. We will also notice that the known Lundbergs-
Kramer theorem of the classical theory of risk concerns with cases when 1 — F (z) ~ ™=,
z — +00 and is inapplicable to the case of payments of the large size. Then the “Lundbergs
coefficient” is not even defined (see [15]).

It is known (see [1]) that W (t.z) = 1—_;‘fd,P{S(y] <y-z}.0<z<tand W(z)=
‘11111: W (t.z) = 1 —e™ . z > 0. where w is the greatest nonnegative root of the equation
v(s)=s—A(l—¢(s)) =0(w=0fr0=<p <1 andw >0 for p;y > 1 (see [1]).

“Function L (z) > 0 is called SVF in infinity. if L (tx) ~ L (t), t — o<, ¥z > 0.
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When g > | is fixed, we have w = pyw — Ay (w) — 1 + aw) and taking into account the
inequality (see [16]) |¢? —1 - 3| < |3f° /2. Red < 0. we'li abtain

L
po=h [ (6%~ 1 +6z)dF (z) < X [2.
U]

S6 w > 2p[A. and therefore 1 — W (z) = e™* < ¢72/2_ which loses its meaning when
p—0,

In this paper the dual LSTs are obtained for W, (z) under the following conditions.

=

1) The LST v (s) = g e **dF (z), Re(s) 2 0 admits asymptotical representation of the

form
vis)-1+as~As'L(1/s),5|0,A>0,1<~ <2 (2)

where measurable function L (z) > 0 is a SVF at infinity. It is true to note (see [11]) that
when | < 5 < 2. then condition (2) is equivalent to condition (1).

2) Assume that p — 0 (condition of the critical loading).

Denote L™ (t) = FVL"’TFI where M@ (t) is the inverse function of o 0<a<2 It

is proved (see [7]), that w ~ (5)‘*!&"'" (‘E) when py | 1. When p; 11 we use the same

notation w ~ (ﬁ}:hla;"”" (g) for quantities of the rate (ﬁ)ﬂ-'l.;"_” (E) and assume that
ﬁ - ". P ]' 1:

Let the functions ¢ = V (s) and ¢ = A(s) respectively be the unique solutions of
equations z” — z = s and 27 4+ 2z = 5, 5 2 0, satisfying the conditions V (0) = 1 and
A (D) = 0* (see [7]). Let a(p)=30,

w. a(p)=o(pw). pm |1
50 alp)p™’, a(p)=o(pw). ;1L
=1 w. a(p) ~pu. m1ll,

(a(p) B-)"LY (Ble(p)™). pw=o0la(p)). p 11,
and
1, alp)=o(pw), m il
s, alp)=olpw), 11
A(s)=A(s.alp)) =4 V(s). a(p)~pw, Ll
A(s). alp)~pa. mil
& pu=olalp). m1l1.
J.et us recall some known results from [7].
Theorem 1: [f the condition (2) is fulfilled and ﬂ{p)"—ﬁﬂ. then the limit
ll.imP{Np)rS:}=l—e“.z>0 ezists if and only if 0 (p) ~w.

In [7] the following new representation of non - ruin probability is found

]
Wie =4 | -aU(Ey). 0<zst 4,50 @)
1. T

*For example in case of modeling by distribution of type of Pareto F (z) = 4. we have L (r) = 1=
and y = M) (&) is the solution of equation y*~7 + y"* = z.

'Equation 27 4 = = & and its solution A (a) are introduced by Denielian [17]. Then. they were also
considered in [18] and [19].
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where ?e"’d,U (z.y) = e~ and z = w(8s) is the unique root of the equation V(R
o

Res > 0. By means of (3) the following theorem is proved.

Theorem 2:Let the condition (2) be fulfilled, 8 (p) ~¢ (p) as p — 0 an

ta(p) — 7,0 < T < 0o. Then there exists the limit DF W, (z), = > 0 and
1) Wy (z) = 1—e", in case of 8 (p) = o(w), when pr | 1;

E)Wr(zh{? ::: , in case of 0(p) = o (w), when pr T 1.

)W, (z)=1- gf{u.zjdu, in case of 8 (p) ~ w and w = o (6 (p)) when M
re""‘ fv.z)dv = e ™Aa) | 5 > 0 and (see [7])

f(z.:)=#§nﬂﬂﬂn;ﬂﬂtr(u,-’)z-’¥*m=§la,1<1-e:-2,
with 5(ry = { T0n 0 =p); O(p)~w or B(p) =), p =0,

w=0(8(p)).p—0
In all other cases W, (z) =1, z> 0.
Remark 1: Wi(z) =1, >0, for any fized t and any 6 (p);=50- Wo (2) =
Corollary 1:Under the conditions of Theorem 8, when v = 2 and py — 1, Wr(2) =
1-Fp(27) ifw=0(0(p)) and W, (z) = 1—9"'"""’*‘51'.;\5 (r)2e~T if 0 (p) ~ w, where

F. (u) is DF with density f, (u) = 2= exp {~£}, u> 0.

di-—-‘w-"om‘

..l.whm

3. Dual Laplace - Stieltjes Transformations of Critical Risks

Let p(#.0.¢) be o stable density with characteristic function exp {—|s|" E'XP{*";‘}}' 0<
a <2 {see {]l}). Denote P, (z} = 1'_% f p(ur_#"r"r - 2) du, = € R.71€ Rt and
Ey (z) = { ; : : : In case of generalized Poisson process S (t) distributed on the whole
real axis, in [7] the following theorem is proved for random process ¢ (¢) = S (t) — ct.

Theorem 3: | ¢"*dF (z) — 1 — aia ~ —AC,|s|"L(1/s]), s — 0, where A>0,1 <7 <2

and C = exp {+4=10}. £ 0 (p);=50 and t — +o0 so that ta(p) — 7, 7 € [0. 400,
then there exists the limit im P {8 (p)¢ (t) < z} = ® (7.2), z € R'. where & (0.z) = E, (2),
® (+00.2) = 0, @ (7. 7) = E_g) (z) when 0(p) = o(w) and & (r.xz) = &, (x — 5 (7)) when
0(p) ~w orw=0(8(p)), and 0 < T < +c0.

Denote 3 (s) = s'/* when & () = 0 and 8(s) = ¢ (s) when & (7) # 0.

The dual Laplace - Stieltjes transformations of critical risks are represented in the fol-
lowing theorem.
Theorem 4: Function

N(s.v.p.7) =exp {— _f{c"‘ -1)d, [re"""ﬂ:—“-ldu] }, 0<v<oo 520,

0 <7 < +00. u > 0 has a representation

B (uv/7)

Ns.v.p1)= W

(4)
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and when o = 1 it is a dual LST for DF U (z.t) =1 —,jﬁ{ru.:)du, where

Lp(%.L.-1). é(r)=0.

[ (r.z). é(r)#0.

Proof: Consider the nontrivial cases of function N (s, v, g, 7) arising when 8(p) ~
w and w = ol(0(p)). In those cases DF &(r,z) hes demsity h(z.7.7-2) =
1“»“'pf(z ~6(r) TV 4y —2). Taking into account that p(-z.a.9) = p(z.a,—)
(see [11], [20]), we get h(z,T.7—2) = =ihp (- (z—6(7))T7/,~.2 —'1) and denoting
k = n+ 1 in the representation

plz.0.p) = ;';gl [ﬂi—fﬁi*—jl{—z)“nin(ﬂﬁl)], 1<a<2

(see [11], [20]) we obtain

olr.r)= {

hiz,7.2—7)= f’#p((&(f} - :}r"{'.'y,2 —'y) =
1 £ [0 (eg2) -4 s stz

By means of sin “#20=10 = (—1)"sin etl), we get
hlzn2-7)= & B [CHGHACT (1) 7~ sin 250] = 27 (r.2).

In case of 4 (1) = 0 comparing with (see [11]) p(z.2.9) = ;l;él [ﬂ%’*ﬂ(-—z-‘"}"ﬁnf_ﬂgﬂ],
0 < a < 1, we obtain

] -1\ E
2= = sk B[40 (8 +1) (-(5)7F) s ()] = rn (5.3, -2)

So we have h (z.7,2 — 7) = L¢ (z.7). Changing the integration order in definition of function
N (s,v,1,7). we get

N(s.v.p,7) =exp {fe"‘"‘ [;F (e —1)h(z.Tu.7—2) d::] u"‘du}.

Again we change the integration order and make a change of the integration variable z = Tu.
Taking into account relations obtained for h (z.7.2 — ) we find the equality

N(s.v.p.7)= exp{;r‘—"’--! [Ie—“-%(x.z) dz] d::}.
Density ¢ (x.z) has LST exp{-z3(s)}. where 8(s) = ¢(s). or 3(s) = FUAN
Then N(s.v.p.7) = exp{?'i-';'-ﬂ exp{—zﬁ(!f)}dr}. Taking into account that

I!:-‘;—”e"“dr = In (l + f') we obtain (1). The last proposition of Theorem 4 follows
from the following equality
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v }‘c"" {?e'“d,U {z.t}}dt = ?‘c"'d,_ [v -‘fe""[f{:.ﬂdt =,.—£.”Hi{7'?lr'l'
0 0

+ —rt - _1,
where it is taken into account, that v :f'r'*u(z.t)dt =1—e/Nand [e L
The theorem is proved. \ ) tak
Remark 2: By means of relation 1¢(z,7) = zh(z.7.7 —2) the lbimit DF “r{’:}_ 3
the form W, (z) = 1~ [ 2h(z,v,y — 2)dv. Hence in limit the form of ruin probability is
0

preserved. -
Remark 8: From the formula P {T, < t} = 1~ W (z.t) the analog result for RV T Jollows.

4. Conclusion

The compound form of the dual LST of the limit law W, (z) is represented in simple form,
which can be applied in solution of problems of finding of the critical risks, of asymptotic
estimations and of obtaining of inequality type estimations. Those estimates can be used in
adaptive control strategy for multiperiodic insurance risk model investigation.
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Uphwhlpulwi nhulybph Ypylwyh Lwujwu-Unhpobuh dlwhnfumpymGGtpp
puguuwlul wywhnjugpuiwb Jéwplph phwypniud

L Uwpunhpnujw(

Withnthnud

Uniyl wphunwbpp Glppwo b puguuwlwl Jéwplbipm| (unynpwijwl Ywiph
nhfinwlbph wuwyfwiwgpbpn]) wowhnjwgpuljwl donbih  Yphwhliwlwl chulbph:
Uhphuwywgwd Gl Yphwhlwlwi ppunfhéwlibpod wnwgwgnn uwhiwlw)hl phnphiGtp
L quijwd bl puwgwuwlwli Jéwplbpm] Ynpbiump] wepehnjuwgpmipjwl chulh doghjnud
wmugwgnn Yphwhljuljwi nhuljbph Yplhiwih Lwujwe-Unhpoboh dladhojumpymGlbpp:
Lowwpwljwd b6 ghuauplwd Yopbljoh] chuyh dnnpbth U UwihGnjuym  Ynndhy
puqiwywppbpwlwl wwwhnjuopuijwl phulh dngbih hwiwp Gopoplwd wwwwhy
Yunuwpdwl gqopdplpwgh dwipudwulbpp:



