Mathematical Problems of Computer Science 35, 1418, 2011

Implementation of a Search Parallelization Method on High
Performance Computing Structures

Grigor H. Geoletsyan and Hrant G. Geoletsyan

Institute for Informatics and Automation Problems of NAS RA
Russian-Armenian (Slavonic) University

Abstract

5y

We describe the implementation of modified initialization and load balancing
methods during parallelization of rch algorithms for solution of optimization
problems on high performance utifg Str 4

Most optimization problems in discrete mathematics related to applications m
new research areas are NP-hard. Parallelizdtion of search algorithms using static and
dynamic load-balancing (distribution’ of computational resources) and their
implementation on high performance computing structures, in particular, on
computer clusters is an essential tool for. obtaining effective solutions to such
problems.

Description of search process requires specification of the order of visiting of graph vertices
corresponding to states of the search process. Examples of uninformed search methocls are the breadth-
first search, depth-first search, depth limited, iterative deepening search (IDS). For these methods, the
location of targets does not affect the order of vertex disclosure, systematic generation of new states and
checking whether they are a solution. Informed search methods, in contrast 1o the methods of the
uninformed search, find solutions more efficiently, using heuristic information specific to this problem -
information about the global nature of the graph and the general location of the tssget search. Examples of
informed search methods are A* and IDA* [8]. A* search method is an efficient optimal algorithm of this
type with the use of this heuristic “That is, no optimal algorithm consider fewsr vertices than A® (except
for possible consideration by the vertices with the value of heuristic function - the estimated cost of the
path to a solution passing through the vertex n - f(n) = C* in a different sequence, where C* - evaluation
of optimal solutions). Despite the fact that the method of A*, in general, performs significantly fewer
transactions than uninformed search methods, for most of the tasks it still requires an exponential number
of operations. The drawback of this method - & large amount of memory needed to store information
about the tops, often does not yield the desired solution, due to limitations on available memory.
Proceeding from this application of full and optimal search techniques, saving memory in use at the
expense of execution time is prefferable.

Such a method is, for example, the method of iterative deepeming, which is an effective tool to
reduce the demands on memory. By applying this method to A*it is obtained an iteratively deepening A*
search method (IDA*) [8]. which at each iteration seeks a solution to the estimate f. passing through all
vertices with an estimate of less than or equal to f. The time complexity depends on the choice of
heuristic function. Reducing the time spent also contribudes to the lack of need to store the list of
priorities.

Application of high performance computing structures, in particular, the clusters allows parallelizing
the process of finding solutions in the state space. Use of effective schemes to parallelize (e.g

14

G. Geoletsyan, H. Geoletsyan 15

parallelization breadih) enables solutions a wider range of problems that makes it important to develop
effective methods for perallelization.

The overall strategy to parallelize the search involves finding the initial distribution of swates
{vertices of the tree) 1o processors (initializing of search). Each processor performs a local search of
solutions, besides processors process incoming requests for work from other processors. Upon completion
of the local examining of vertices, a request for allocation of work is initiated. To achieve uniformity of
work static and dynamic load balancing methods which allow the distribution of vertices during the
implementation of search should be used.

In [2] there were proposed two methods to initialize the parallelization of the search - INITI, INIT2.
In the method INIT] all processors start searching from the root node and perform breadth-first search
until the number of vertices in the list of unclimbed vertices becomes less than the number of processors.
Each processor performs the same operations and they have identical lists of identified but not viewed
vertices. Afier that, each processor chooses a deterministic way to the top for local search so that all
nodes have been distributed and no node is located at the two processors. The advantage of this method is
lack of data transfers between processors without increasing the execution time and reducing the
acceleration of the parallel algorithm.

Initialization method INIT2 is a static method of balancing. All processors start searching to the
width from the root. Then the vertices are distributed among the processors. It should be noted that not all
vertices may have the same weight (a value proportional to the number of vertices in the corresponding
subtree), since vertices at a lesser depth, on average, have larger (by the number of nodes) subtrees, and
therefore require more lime 1o process them.

Uneven distribution of work between the processors can cause inefficiency of the method to

lelize. Using dynamic load balancing method allows achieving uniformity of distribution. Since
under the initial partition of the tree it is difficult to predict the size of the subtree of the top, different
methods are used for dynamic load distribution: asynchronous carousel, selection a random neighbor, and
so0 on. A distinctive feature of the latter is that the distribution of work is going on locally. This leads to
the fact that the querics arc repeated often. This can be avoided by using the global distribution of work,
which provides a better distribution. To find the optimal solution the parallelization of the search is
conducted on equal depths of the search tree, For this purpose, each processor periodically requests the
donor processor 1o provide vertices situated on the upper tiers of the search tree. Based on the information
on the levels of processed vertices received by the requesting processor, the donor processor takes an
appropriate decision.

Upon receiving a request for the task the processor - donor passes a part of the work, the amount of
which is approximately equal to half the total count of vertices in the list. This strategy helps to ensure
approximately equal proportions of promising and less promising vertices in the list of processors which
improves the efficiency of the parallel algorithm.

For iteratively deepening informed depth-first search IDA® in the division of work it is proposed to

consider not the depth of the vertex, but the value of the estimation function at the given vertex. For
division of works the vertices in the stack are ranged in ascending order of values of the evaluation
function, in case of the equal values of the estimate the depths of the vertices are taken into account: the
vertices located deeper are located higher in the sorted list. This process of a modified depth-first search
is repeated &t each iteration [DA* for as long as the solution is found, or the search has been stopped.
If finding of any solution is sufficient, then the processor that has found the solution stops the operation of
other processors. If you can not implement this mechanism of work quitting in a given architecture, the
processors must periodically inquire each other on the indicator of a solution. If you want to find all
solutions (or all of the best solutions) of the problem, then the parallel depth-first search views some
portion of the search space (defined by the algorithm and heuristics used). Since the search space is
dynamically shared between processors, to verify the completion of work by any processor is not
sufficient to query processors in a successive order. The reason is that the processor can get the job after
having been interrogated. Therefore using methods of distributed assessment of the work completion of
processors is required that can be done, for example, using the Dijkstra's algorithm [6].

Thus. when parallelizing [DA® search strategy initialization INIT2 and method of distribution of
work during the dynamic load balancing [2], [3] are proposed, which can be applied to a deep branch and

. = 5
16 Implementation of a Search Parallelization Method on High Performance Computing Structure

tion
bound method (DFBB) with some modifications, in this case the processors must know the best solU

urren ilable. y _ b
g F:rynzzliwcue;lru with shared memory the condition is easily achieved by storing the best solutions

s k
shared mem ,u-ndformpmswimnmsemnmm.uch r stores the best :
L:Mm. Once aog-ow finds a better solution, it shall inform all other processors, which, if mmwthej
meloulbeslsoluiom.ﬂotemltifﬂnbedmlm known to this processor is Worse hm.
son. i effici but not on the correctness of the algort
global best solution, it can affect only the ency but | on of expenditures
Additional time costs associated with keeping the best solution make a small fraction of €

ired for the dynamic balancing of loads. . P> 3 i
mqmgfveloped methods to parallelize IDA® - initialization, dynamic balancing have been ‘PP';%';
problems solved by systematic search, for example, the problem of finding disjoint paths between
of vertices in a directed graph and bounded vertex cover of a bipartite graph [1]. uction
mwnrmmammmmmiwwlmm.qu in the pﬂ:llm %
of high-performance VLS, since, with increasing integration of chip production, the pro £ fault
increasing the efficiency of production arises. Because of this, it is important to use n-ncthodsfo i
tolerance for an acceptable level of efficiency in output [4], for e_n.rnple‘, in the manufacture of €1 ity
containing very simplumma-ﬂnmnw.miadmwhlmmgdem_md forswragewrd;ds
MhmﬁnmmﬂngofmmmﬁWmm“ofmchmOnenfmm o
ndawdmimﬂﬁmﬁﬂmminﬂnpﬁucﬁmofmemistondd mdundmﬂrowsmdwlm“
Mmhmﬁinwﬁmﬂﬁhﬂwuﬂwﬂmﬁgﬂmdmuﬁmﬁﬂnfwﬁy columns
undrnmueraplr.edhyﬂum.KmuﬂmeMMﬂanmwmpwsﬂE;lﬂﬁ
reconfigurable VLS] memory. This problem is formalized as a problem of restricted vertex cover ofa
biuﬁhmwmmmdmdlﬁwﬁhwhmrmmmemmdlhﬂm
subset to the columns of a rectangular array. .

The task of finding & bounded vertex cover of a bipartite graph [7] has the following form.

Given are a bipartite graph G (V. ¥» E) and two positive numbers k, and k;. Find subset C, < ¥, and
subset C, cV; such that for every edge in E at least one of its vertices belongs to C, UC, and the
amount of |C;| + |Cy| is minimal. .

To obtain high performance programs, we chose a data structure for the effective implementation of
basic opuuimn.mdaummoftheyaphismndglohliymddmmguwmh it is not chan
mlymiablesnfwrﬁmmﬂnmmmhﬁngtngimmmmny.

The top of the search tree is characterized by subsets of Cifn). Ca(n) sets Vi(n). Va(n). which correspond
to an intermediate vertex cover. Component gfi) of heuristic fimction ffn)=g{n)+h(n) [1] m this case IS
equal to |Cyfw)| + |Cxfn)]. Component hfi) is calculated s follows. For all values of x from 0 to kr|Cil x
uncovered vertices (ie, not belonging to the covering C,) from the set ¥, with the largest number of
ancovered incident edges are chosen. The number o'y vertices of ¥, you need to cover, is calculated ir
such a way as to guarantee the admissibility of the heuristic function. Compared with the heuristic
function for searching for the solution of this problem by IDA®, given in [8], the functions described
above can permit considering a smaller number of vertices (in some cases up to two times). The results of
testing the performance of a parallel program using the heuristic function and dynamic balancing confirm
that the number of options considered in the state space is significantly reduced and a high degree of
parallelization is achieved [2], [3]. It should be noted that the greatest effect of the proposed methods for
parallelization is shown for large values of k; and k;. In this case, however, keep in mind that an increase
in k; and k;is limited with computing capacities, due to the exponential nature of the algorithm.

In software implementation of the proposed approach a parallel library of Parallel Boost Graph Library
(PBGL), installed and tested in a parallel cluster environment “Armcluster” within the target project
"Creation of the state system of scientific computing Armenia” is used.

To test the proposed approach (define the run-time of the parallel algorithm) in [10] examples.
consisting of 14 classes, which differ by their characteristics, were used. For each class of instances 100
random tests were generated. Figure | shows comparative temporal characteristics of some algorithms
given in [10], the method uses an iterative deepening search (IDS), and iteratively deepening of the
modified method of informed search (IDA*) using the proposed methods of initialization and balancing

G. Geoletsyan, H. Geoletsyan 17

The work of elgorthms stopped, if the durstion of execution exceeded 100 seconds Temporal
LmniuofunmdiﬁedIDA’hu:uﬂ‘nwudilsmmyinthesolmmcfﬂlepmbhmm
13 clusses of examples of the proposed modification has better time indices). A

Clazses of exzmpies

[—4—B00 ——34T2 ~o—8AT3 —s—ma —=—10s!

e 4 .

Fig |. Comparative time performance of aigorithms.

'

References
[1] F. Feoneuan, “IspHeTHacckuil &1TOPHTM PEUICHHA 30484H OFPAHAYCHHOTO BEPLIHHHOTO MOKPHTHSA
asynonsioro rpaga”, loxmaaw HAH PA, 7. 107, 1. |, crp. 44-48, 2007.
[2]T. Teoneusn,I. T'eoneuss, “Huuumanusauss napannensvoro noucka”, oduunan naywsan
wongpepemyun PAY, 2007. Chopnux naysnsx cmameit. Epesan, ctp. 115-121, 2008.

[3] . Teoncusn , I'. Teoneusn, “HHCTPYMEHTR/IBHEIE CPEACTEA PEANH3AUMH METOLOB MEPAIENLHOrD
nowexa” Bectnux PAY. Epesan. 1, cc. 32-40, 2008.

[4] I Kim, Y. Zorian, G. Komoriya et al.,, “Built in self repair for embedded high density SRAM”,
Proc. Int. Test Conference, pp. 1112-1119, 1998.

[5] H. Fernau, R. Niedermeier, “An efficient exact algorithm for constraint bipartite vertex cover”, J.
Algorithms, vol. 38, no. 2, pp. 374-410, 2001.

[6] A. Grama, V. Kumar, “State of the art in parallel search techniques for discrete optimization
problems”, JEEE Trans. Knowl. Data Eng., vol. 11, no. 1, pp. 28-15, 1999,

[7] 8.-Y. Kuo, W. K. Fuchs, “Efficient spare allocation in reconfigurable arrays”, DAC, pp. 385-390,
1986.

[8] M. G. Lagoudakis, “An IDA* Algorithm for optimal spare allocation”, SAC, pp. 486-488, 1999,
[9] N. R. Mahapatra, S. Dutt, “Random seeking: A general, efficient, and informed randomized scheme
for dynamic load balancing”, /nt. J. Found. Comput. Sci., vol. 11, no. 2, pp. 231-246, 2000.

[10] F. Yu, C-H. Tsai, Y-W.Hang, H-Y. Lin, D. T. Lee, S-Y. Kuo, “Efficient exact spare allocation via
boolean satisfiability”, Proceedings of the 20th IEEE International Symposium on Defect and Fault
Tolerance in VLS| Systems (DFT'05), Oct,, Monterey, California, 9p. 2005.

18 Implementation of a Search Parallelization Method on High Performance Computing Structures

Zwmnwplpiwl qguiquhbnugiub dhpngh hpwljwiugnudp pupdp
wpmnwnpnoqwijwopunip hwyynnuwi junngywdpibpnud

9. G-bmbyjwl L 4. Shinghg pulb
Withoihon
Lljwpugpijwd b hwdwlupgiud hwnwpidwb wignphpdlbph gmgubbmugdwi uhqpﬂwphl'll"-“ﬁ

L pwpubuunpfwt Soghphljwgiwd dopngh ppujwiwgndp pupdp u.mmmrmnql.ul]"-"iml'l'*“’p
hwzynquijui juenigwdplhph dpw oupnifwpugiwi funhplbph mddwi dunfwbwl:

