Mathematical Problems of C: Science 35, 46 52. 2011.

Realization of 1D Classic Heisenberg Spin-Glass
System on GPU

Hakob G. Abajyan

Institute for Informatics and Automation Problems of NAS of K A
e-malil habe jyan@ipia.sci.am

Abstract
New high performance parallel algorithm for simulation of 1D classic Heisenberg
spin-glass eystem is developed. The realization is done on Graphics Precessing Units
(GPU). Numerical simulations of the classic Heisenberg spin glass model show that this
is & good example of applications that may benefit of the GPU computing capabilities.
GPU performance time and memory statistics are presented.

1. Introduction

Let us consider classical ensemble of disordered LD steric spin-chi-ins (SSC). where it js
supposed that interactions between spin-chains are absent (later ¢ will be called an ideal
ensemble) and that there are N, spins in an each chain. Despite so'ne ideality of the model it
can be interesting enough and rather convenient for investigatior: of a number of important
and difficult applied problems of physics, chemistry. material. science, biology. evolution,
organization dynamics, hard-optimization, environmental and social structures, human logic
systems, financial mathematics etc (see [1, 2, 3, 4]).

Mathematically mentioned type of ideal ensemble can ‘ve generated by 1/ Heisenberg
spin-glass Hamiltonian without external field [3. 4):

Ne=1
Ho(Na) = — Y Jii15, 84y, it (L)
=0 -

where 5; describes the i-th spin which is a unit leny,th vector and has a random orientation.
ln.tha expression (1) J,i4 characterizes a random interaction constant between ¢ and i + 1
spins, which can have positive and negative values as well. The distribution of Jiu4y is
detailed described in [4]. '

For further investigations it is useful to rewrite the Hamiltonian (1) in spherical coordi-

No=1
Ho{lN,) = - g Ji i [cos @y cos w3 cos(2, — i51) + sin g sin s, (2)
A stationary point of the Hamiltonien is given by the system of trigonometrical equations:
I OHq dH,
— ="0. =20 =
) o @)

46

H. Abajyan 47

where ©; = (1,.2,) are angles of i-th spin in the spherical coordinates system (v; is a polar
and 7, is an azimuthal angles). © = (©;,©,....0Oy,) respectively describe the angular part
of a spin-chain configuration. xRk

In case all the interaction constants between i-th spin with its nearest-neighboring spins
Jitss Jiisy nnd angle configurations (Yi—y. i-1). (¥i.;) are known. it is possible to explic-
itly calculate the pair of angles 8,51 = (¥is1.9i41). Correspondingly. the i-th spin will be in
the ground state (in the state of minimum energy) if in the stationary point ©7 = (¥{.¢])
the following conditions are satisfied (for more details see [4]):

Aps(©7) > 0. Ay, (0]) Ay, (8]) — A7 4, (00) > 0, (4)
where Ag,q,(60) = B Ho/002. Aap,(67) = Apa,(67) = & Ho/Ba:idp;.

2. GPGPU Technology

In spite of the availability of high performance multi-core systems based on traditional archi-
tectures, there is recently a renewed interest in floating point accelerators and co-processors
that can be defined as devices that carry out arithmetic operations concurrently with or in
place of the CPU. Among the solutions that have received more attention from the high per-
formance computing community there are the NVIDIA Graphics Processing Units (GPU),
originally developed for video cards and graphics, since they are able to support very de-
manding computational tasks (see (7, 8. 9]). As a matter of fact. astonishing results have
been reported by using them for a number of applications covering, among others, atomistic
simulations, fluid-dynamic solvers and option pricing. Simulations of statistical mechanics
systems and the classic Heisenberg spin glass models in particular, are other examples of
applications thot may benefit of the GPU computing capabilities.

CUDA has a hierarchy of several kinds of memory (see Figure 1):

e global memory (DRAM): this is the main memory of the GPU and any location of it is
visible by any thread. The bandwidth between the global memory and the multiproces-
sors is more than 100 GB/sec but the latency for the access is also large (approximately
200 cycles). -

» shared memory: access to data stored in the shared memory has a latency of only
2 clock cycles. However, shared memory variables are local to the threads running
within a single multiprocessor and the size of the shared memory is tiny compared to
the global memory that is, usually. in the range of GBytes.

e registers: on o GPU there are thousands of 32 bits registers. It is worth noting that.
for each multiprocessor. there is more space for data in the registers than in the shared
memory.

e cache: L1 and L2 caches have been included in the Fermi architecture (see [5]). Actu-
ally. on each multiprocessor there are 64Kbytes of private L1 cache that can be split.
at run time. in a 48 Kbytes shared memory and a 16KB L1 cache or in a 16Kbytes
shared memory and a 48 L1 cache.

e constant and terture: these are special memories used respectively to store constant
values and to cache global memory (separate from register and shared memory) offering
dedicated interpolation hardware separate from the thread processors.

U
48 Realization of 1D classic Heisenbers spin-glass system on GP

-

¥ P

Figure 1: CUDA Memory Hierarchy
Functions running on a GPU with CUDA have some limitations: they can not be recur-
give; they do not support static variables; they do not support variable number.of erguments;
function pointers are meaningless. Further information about the features of the NVIDIA
GPU and the CUDA programming technology can be found in [5, 7].

3. CUDA Implementation

For the GPU programming, CUDA Software Development Toolkit 3.2 version was employed
that offers an extended C compiler and is available for all major platforms (Windows. Linux.
Mac OSX). The extensions to the C language supported by the compiler allow starting
computational kernels on the GPU. copying data back and forth from the CPU memory
to the GPU memory and explicitly managing the different types of memory available on
the GPU (with the notable exception of the caches) The programming model is a Single
Instruction Multiple Data (SIMD) type. Each multiprocessor s able to perform the same
operation on different data 32 times so the basic computing unit (called warp) consists
of 32 threads. To ease the mapping of data to threads, the threads identifiers may be
multidirensional and. since a very high number of threads run in parallel, CUDA groups
threads in blocks and grids.

One of the crucial requirements to achieve a good performance on the NVIDIA GPU is
to hide the high latency of the global memory accesses (both read and write) by following a
set of rules that depend on the specific level of the architecture. Also important is to avoid
running out of registers since registers-spilling. although supported. has a very high cost.

Here is the pseudo-code of CUDA realization :

ftinclude<stdio.h>>

H. Abejyan 45

#include<cudah_-

{

// Kernel that executes on the CUDA device
--global__ void kernel_test (Node® currentLayer. int currentNodeCount.
Node* nextLayer. float* randNumbers)

// The main logic that should be done on GPU

// The main routine that executes on the host

int main (int arge , char* argv(])

{

float *array_host, *array_device; // Pointer to host and device arrays

int N = atoi(argv(l]); // Number of elements in arrays

size_t size = N * sizeof(float);

array_host = (float*)malloc(size); // Allocate array on host
cudaMalloc((void**) &array_device. size); // Allocate array on device
// Initialize host array and copy it to the CUDA device
cudaMemepy(array._device, array_host, size, cudaMemecpyHostToDevice);
// Do some preparation work on host

// Do ealculation on device

kernel_test< << gridDims , blockDims >>> (parameter _list);

// Retrieve result from device and store it in host array
cudaMemepy(array_host. array_device. size. cudaMemcpyDeviceToHost);
// Do final work on host

// Cleanup
free(array_host);
cudaFree(array device);

return 0;

50 Reslization of 1D classic Heisenberg spin-glass system on GPU

GPU Cores l%
Clock in MHz 933
Single Precision 78
Double Precision .

Floating Point Precision [EEE 754 single and double
Bus Type : GDDR3
Internal RAM 4GB
Memory Speed 800 MHz
Memory [nterface 512-bit
Internal RAM Speed 102 GB/sec
Compute Capability 1.3
TDP Watts 187.8
Form Factor and Features 2 slot video card
Auxiliary Power Connectors 6-pin and 8-pin
Thermal Solution Active fan sink
Software Development Tools C-based CUDA Toolkit

Table 1: NVIDIA Tesla C1060 Cerd Specifications

In Table | and Table 2 the key aspects of NVIDIA GPU (Tesla C1060) which was used
for numerical experiments are mentioned.

GPU model Tesla. C1060 |
Number of Multiprocessors 30
Number of cores 240
Shared memory per block (in bytes) 16384
L1 Cache N/A
L2 Cache N/A
Number of registers per block 16384
Max Number of thread per block 512
Error Checking, and Correction (ECC) No

Table 2: Main features of the NVIDIA GPU-used for the experiments

—global_. void set.vector_to_zero (int* array, int size)

{
int i = blockldx.x * blockDim.x + threadldx.x;
if (i < size) {
array(i] = 0;

In Table 3 and Table 4 there are correspondingly presented GPU time and memory
stutistics. It is generated by “ CUDA Compute Visual Profiler” tool (see [6]). In the presented
tables there are mentionesd Lhe following methods:

® kernel.test - the main kernel method which runs one GPU.

® set.vector.to.zero - helper kernel method which runs one GPU.

e cudahMemcpyHostToDevice - copy data from host to device method.

H. Abajyen 51

o cudaMemepyDeviceToHaost - copy data from device to host method.

Method GPU Time (sec) | GPU Time (%) |
kernel_test 331.968 83.71
set_veclor_to. zero 2.368 0.59
cudaMemepyHostToDevice 41.664 10.5
cudaMemepyDeviceToHost 20.544 5.18

‘Table3: CUDA Compute Visual Profiler : GPU Time Statistics

Method Shared Memory Per | Registers Per | Host. Memory
Block Thread | Transfer Type
kernel test 72 55 =
set.vector_to zero 28 2 -
cudaMemepyHost ToDevice - - Pageable
cudaMemcpyDeviceToHost - - Pageable

Teble 4: CUDA Compute Visual Profiler : Memory Statistics

4. Conclusion

The rapid increase in the performance of graphics hardware, coupled with recent improve-
ments in its programmability. have made graphics hardware a compelling platform for com-
putationally demanding tasks in a wide variety of application domains. The main advantage
of GPGPU technology is that GPUs are a tremendously cost-effective way to boost perfor-
mance, They are used for efficient and cost-effective supercomputing.

Using equations for stationary points of Heisenberg Hamiltonian and conditions of energy
minimum of system on nodes of periodic lattice, new high performance parallel algorithm for
a simulation of 1D classic Heisenberg spin-glass system is developed. GPGPU technology
is used and the realization of the algorithm is done on NVIDIA Tesla C1060 computing
processor (See Table 1 and Table 2). Since the ideology of GPU technology is SIMD (Single
Instruction Multiple Data) and the algorithm is from that class of problems. fully paral-
leled implementation was obtained. Numerical simulations of the classic Heisenberg spin
glass model show that this is a good example of applications that may benefit of the GPU
computing capabilities.

Also in the paper GPU time and memory statistics are presented. They are generated
by "CUDA Compute Visual Profiler™ tool.

Acknowledgment

Special thanks to Prof.. DrSei.. Ashot 8. Gevorkyan for introduction to Heisenberg spin

glass systems and to Ph.D. Hrachya V. Astsatryan for the access to Tesla C1060 and for

cooperation.
References

[1] A.P. Young (ed.). Spin Glasses and Random Fields. World Scientific. Singapore. 1998.

[2] R. Fisch and A. B, Harris. “Spin-glass model in continuous dimensionality”. Phys.
Rev, Lel.. A7, p. 620. 1981.

52 Realization of 1D classic Heigenberg spin-glass system on GPU

onception and computation algorithm
der the influence of external field”,
Verlage. 10.1007/978-3-642-

[3] A. S. Gevorkyan et al.. “New mathematical ¢
for study of quantum 3D disordered spin system un
Trans. On Comput. Sci., VII, LNCS, pp. 132-153, Spinger-
11389-58.

[4] A. S. Gevorkyan. H. G. Abajyan and H. S. Sukd
1010.1623v1.

[5] NVIDIA CUDA, C Programming Guide, version 3.2. 2010.

[6] NVIDIA Compute Visual Profiler User Guide, 2010.

[7] L. Nyland, M. Harris, J. Prins, uFast N-body simulation with CUDA. in: GPU Gems
3°. Addison- Wesley Professional, Ch. 31, pp. 677695. 2007.

8] J. D. Owens. D. Luebke, N. Govindaraju, M. Harris. J. Kruger, A. Lefohn, T. J.
Purcell. “A survey of general-purpose computation on grophics hardware”, Computer
Graphics Forum, vol. 26, Issue 1, pp. 80113, 2007.

[9] D. Yuen. J. Wang, L. Johnsson, C. H. Chi, Y. Shi(Eds.). GPU solutions o multi-scale
problems in science and engineering, Springer. 1st Edition, 2011.

asyan. ArXiv: cond-mat.dis-on

10 Qqwuwlwl hbjqhGpbpg uwhl-wuwyh hwiwljwnpgh
hpwijuGugnuip gnubhljutjub wpngbunpGbph Ypw

4. Upwojyui
LETET

Uzfuwnwlpmd phpjwd & 1D puuwlwi <bjqhlipbpg uwhl-wuwih hudwlwpgh
dnnbpuynpiw6 Gop pupép wmownpoquiwGnpjw qmqwhbn wignpppd: Ugnphpdl
Epmhw&mgﬂwh b pudhluiwG Mpngbunpibph (M) Ypw: Eywhd upimyughwi gnyg
mmwum. np nuuwlwi 2bjqhGptng uwhl-wwywyh donbip Yhpwnnipjwl ey ophliwy &

hwoqulwl hGwpunjnpnipymGibph oqumgnpddG wbuwlyymGhg: Uznwwwlpnul
fnl::‘m{]nbtl:pl[;o b6 wpwqugopdmipyul dwiwlwlwihG U hhzonmpywl YhSwlugpuijud

