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Abstract

E-capacity (rate-reliability) region of the ssymmetric broadcast chennel with
stochastic encoding is studied. The asymmetric broadcast channel involves two dis-
crete memoryless channels with a common input. A common message is transmitted
to both receivers and one private message to the intended receiver. We derive an inner
bound for rate-reliability region.
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1. Introduction

The rate-reliability function for a discrete memoryless channel (DMC), which by analogy
with the capacity is called E-capacity, was first introduced by E. Haroutunian in 1967 [4].
The survey studies the function R(E) = C(E), which presents optimal dependence between
rate R and reliability E. The [unction R(E) is inverse to reliability function E(R) introduced
by Shannon [12] as the optimal exponent of the exponential decrease exp{—NE(R)} of the
decoding error probability for oneway channel. Along with achievements in this part of
Shannon theory a lot of problems have remained unsolved. It seems that the approach,
rate-reliability function. is useful for this purpose [4], [5). Furthermore the concept of the
E-capacity is a generalization to the Shannon’s capacity of a channel. The notion C(E) is
in natural conformity with Shannon’s notions of the channel capacity C and the zero error
capacity Cy. When FE increases from zero to infinity the function C(E) decreases from C to
Cy. J i
In & broadcast channel (BC). as introduced by Cover [1]. one source is communicating to
two receivers. In later works. different broadcast channels has been considered. Asymmetric
broadcast channel contains two receivers with one common and one private messages. Works
on asymmetric broadcast channels include [9]. [10], the capacity region was found in [10].
E-capacity region ('(E) for maximal error probability is the set of all E-achievable rates.
Random coding bound for E-capacity region of the BC. where one common and two private
messages are Lransmitted was found by M. E. Haroutunian [8].

In this paper. we consider Lhe discrete memoryless asymmetric broadcast channel with
stochastic encoding and we will find an inner bound for E-capacity region. We apply the
method of Ltypes. Although for problems not involving secrecy. stochastic encoding seldom
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offers any advantage, this study can be useful through out future works which contains

secrecy. !
! s : al setting and

The reminder of the paper is organized as follows. In section 2, the form ng

notation and problem formulation is given. Section 3 is dedicated to prove the theorem

established in section 2. Finally, section 4 is devoted to the result and future direction.

2. Preliminaries and Problem Formulation

We begin with notations. Through out this work, capital letters represent random variables
(RV’s), and specific realizations of them are denoted by the corresponding lower case letters.
Random vectors of dimension N will be denoted by bold-face letters. For any finite set X,
the cardinality of X is denoted by |X]. The set of N-vactors of elements of A is denoted by
XN,

We investigate a discrete memoryless asymmetric broadcast channel with a finite input
alphabet set X, and finite output alphabets ) and Z. The broadcast channel is defined by
the pair (W, W;) of conditional probability distributions, Wy: X =Y Wp: X — Z, where

N
W) & T Watunkea): W (ab) 2 [T Walealzn)

where the product expression follows from the fact that channels are memoryless, and the
vector x € X'V is the input codeword, y € V¥, z € Z" are the output vectors of length N.
My is the set of common messages which should be sent to the both receivers and Ly is
the set of private messages which should be sent to receiver 1. Let U, U; be some auxiliary
finite sets and Uy, Uz, X, Y and Z are random variables with values correspondingly in
Uy, Uy, X,Y and Z. The notation (U4.U;) = X — Y means that these RV's form a
Markov chain in this order. Randomized encoding is defined as follows

Definition 1: A stochastic encoder [ with block length N for the asymmetric broadcast
channel is specified by a matriz of conditional probabilities f(x|m, I), where x € XN, m €
My, leLy Mdﬁ).:wt f(x|m, 1) = 1. :

Definition 2: A code is a triple of mappings (f- 1. 92), where f: My x Ly — XV isa
stochastic encoder and g, : YN — My % Ly and gs : 2N — My are deterministic decoders,
g7’ (m. 1) is the set of all y € YN, which are decoded to m, I, and g3 (m) is the set of all
z € Z¥, which are decoded to m.

Definition 3: The probabilities of erroneous transmission of the pair of messages (m, 1) €
My x Ly by the channels W, and W, using a code (f. g, ga2) are defined, respectively,

efig Wim )& T fixim. QWO = g7\ (m, 1)]x).
xEAN

elf. o Wo.m)2 3 [lxim. DAY (2N — g7 (m)}x).

xeXN

Define maximal probabilities of error of the code (f. ;. 92)

s .
e(f. ;. Wy) = meinax . elf. g1 Wi m. 1)

elf. 2. Wa) & max elf. g2. Wa. m).
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and the average error probabilities for messages assuming that the pair of random messages
My. Ly is uniformly distributed over My x Ly are defined -

- FxiA 1 > "
[! i “’]j = l_-_-_MHI P, |‘c~! '.EMgm‘NC{I. . “;. m. lj.

3 |
éf. ;1 Wa) & WTIE. e(f. g2. Wa, m).

Definition 4:A code (f,g.g,) is characterized by rates Ry, Ry, where Ry and R are the
ransmission rules, respectively, form € My andl € Ly

1 1
Ry = F“’SlMﬂl. Ry = Flﬂliﬁni-

The functions log and ezp are laken to the base 2. For the definition of the rate-reliability
Junction, we refer to [6]. [7].

Definition 5:(E-achicvable rates) Let E = (Ey. By), Bi > 0.i = 1.2 be given. A rate
pair Ry, Ry i called E-achievable rates for the broadcast channel iff for any 6 > 0 and
sufficiently large N there exists a code, such that

1
L log | MliCn] 2 Ra+ Ra—b. 57 1ogIMul 2 Ry = 6. )

and mazimal probabilities of error ezponentially decrease wilh positive reliabilities E; and
E,. respectively,
'EU‘.' 0. wl) S nxp{—N&}. g(fr g WI) s “P{_NE?}‘ (2)

Definition 6: E-capacily region C(E) for mazimal error probabilities is defined as the set
of all E-achicvable rates Ry, Ry. C(E) is denoted for E-capacity region when average error
probabilities are apphed.

Let @ 2 {@i(w) : wm € U} be probability distribution (PD) of random variable Us.
Qo 2 {@u(ualin) : wy € Uy, uy € Up} conditional PD of random variable Uy for given value
w and P 2 {P(zjuy.ug) : up € Up, z € X} conditional PD of random variable X for
given value uy. Define V3 £ (Vi(ylz) : = € X, y € Y} as the conditional PD of random
variable Y for given values x, and V3 & {Va(z|z): = € X. z € Z} as the conditional PD of
random variable Z for given value z. Let denote Q(u1. u2) = Qi(w )Qa(uz|uy ). We consider
the following joint distributions

QoPol) = (QoPoVi(m. upz.y) = Qu, ua) Pzl w2) V(y]2)-

w EUy. €Uy T€X. ye I}
Qo PoVs - {Qo PoVylur.up. 2. 2) = Qur. uz) Pzlur. uz2)V'(2]).

wEU. yElh. T€X. z€ Z}.

So we have Markov chain (Uy. U3) — X — (Y. 2).

For the notion of Lypes and conditional types we refer to [3]. [7]. The set of all probability
distributions (2 on Uy « Uy is denoted by Q(U; % Uz) and the subset of Q(L x Us). consisting
of all possible juint Lypes @ of N-length vectors u;. uy. by On (U « Us)
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i i ions as defined in [7]. The no-

e e the sosonsof el e e coiioal dtrbutons V. g

dh‘g‘:zﬁ::; Q-:I)ll'da{:cl Va: X — Z are the conditional types of respectively ¥y and z given
x € T§p(X). then according to lemma 1.2.6 in 3] we have

W (ylx) = exp { = N[D(VW1]Q. P) + Horw(¥Y1X)]}, forall y € Tpw (Y]x). (3)

W)Y (z]x) = exp { — N[D(V2]|W2IQ. P) + Horyva(ZIX)]}. forall z € Torw(ZIx).  (4)

To formulate the i bound of E-capacity region, we consider the following inequalities
+
Tarw (¥ AUL) + D IWiIQ-P) = B .

min
{ Vi:D(VillWh Q. PYSB)

0<Hh < m‘gxmin
lorw@ AU+ DGIWAIQ.P) - B}, (3)

min
Va:D(VallWalQ.F) < Ex

0< Ry Smgx :Dtv.ﬁ’inﬁ?-"lﬁ”'
and the regions
R.(Q.P.E) = {(Ry. Ra) : (5) and (6) take place for some (Uy,Us) — X — (Y, Z)}.

1 i . P, E).
RAE) qmrtgnmmn'(q 9

-+
low (¥ AValUs) + DOAIWAIQ.P) -~ Ei| . (6)

Theorem: For all E; > 0, By > 0 the region R.(E) is an inner estimate for E-capacity
region of the broadcast channel:

R.(E) € C(E) CT(B).

Concerning methods for the bounds construction. E. Haroutunian proved that the Shan-
non's random coding method [11] to prove existence of codes with certain properties. can
be applied to study the rate-reliability function as well [4], [5]. see also [6]. [7]. Proof of the
theorem is presented in next section.

3. Proof of the Theorem

We shall show that the rate region specified in Theorem is E-achievable. To this end we must
show that there exists a code with certain properties for achievement based on a random
coding technique.
We assume given pair R;. Ra that satisfy (5). (6). We wish to find a code such that for
any 6 > 0 and N large enough with
+
(¥ AT + DOAIWAIQ.P) ~ £~ o[

Mpy| = {Nlna.xmin min
l “fl s 1 Q {"1=INV;EH’|IQ.P]5H|

v..;uua-nl;%irlb.vjsx.. 'iq 142 AU + D(Va||Wh|Q. P) — E, — 5| . }} (7)
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{en| = exp [N max ey pu (¥ AULUL) + DIVIWA Q. P) — Ey — 8"} (8)

v .er,uii; qur
satisly (1) and maximal error probabilities satisfy (2).

We explain codebook generation, then encoding scheme and decoding strategies sepa-
rately
Codebook generation: Let U,. U; be some finite sets and @, some type. We generate
the eodebaook by the following steps.

1. Generate [Mpy| vectors uy(m), which are drawn uniformly. independently from
T4 ().

2. Let @y be o conditional type. For each uy(m) choose [Ly| vectors uniformly. indepen-
dently from 7' (TJuy(m)). Denste the vectors with up(m.1). I = 1.....|Cx].

3. Let P be a conditional type. For every uz(m.l) choose uniformly. independently |J|
codewords from P-shell T5)u(X |u; (m). uz(m. 1)). where J is a finite set. Let us denote
codewords with Xa, 1. wheramEM:w lely. jEJ. Set g

= {xm.!.j}mEMmfsEn.jEJ' : (9)

Encoding scheme: [ : My x Ly — X" is a stochastic encoder. For message pair m, !
one codeword X, is chosen from © (9) with probability distribution [(Xs1;lm,l).
Decoding strategies: We apply the decoding rule for decoders g; and g; using the “diver-
gence minimization” criterion. Suppose that the pair of messages m, [ is transmitted, and
m’, I is received at receiver 1 and m” is received at receiver 2, Define the following decoding
strategies al receivers 1 and 2

1. Every y is decoded to such m'. I that for some V{
y € Ty py (Y |m(m'), ug(m'. '), Xpr.x y). and D(V{|W/|Q, P) is minimal.
2. Every z is decoded Lo such m" that for some 1}
2 € Tlp (2] (m"), va(m".1"). Xero ). and D(V|W2|Q. P) is minimal.

In the following we prove that for any E = (E\. ). E; > 0,1 = 1, 2. there exists a
code as described in codebook generation such that (2) holds for sufficiently large N.

Decoder g; can make an error, if the pair of messages m. [ is transmitted but there exists
(m!,l') # (m.l). such that for some V{

¥ € Ty, (Y uy (m). ua(m. 1), X)) 0 Ty (Y |0y (). wa(m’ ). X e ).

and

D(V/IW\|Q. P) < D(Vi][W:|Q. P). (10)

To simplify the notations we define the following sets for decoding error al receivers 1 and
2. Suppose that the pair of messages m. | has been sent through the channels and m'. l' is
received at receiver 1 and m” is received at receiver 2.
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If m' is not equal to m. the following set is all possible received vectors at receiver |
which can End to error:
Bi(V;. W) £

gTQ%V.(Yl“l(mi-“:[m-f).xm.u}n T e | Té"_p.v,-(Yim(m'J-uz[m'-!‘)-xm-y_;).
m'dm VeLy. J'€T [1 l)

and if m’ is equal to m but I’ # [, the following set is all possible received vectors at receiver
1 which cn.nalend to error:
B(W. W) =

QPV.(Ylul(m) uy(m, 1). X)) U U ;-V;(Ylm (m), va(m. ). X ye)e  (12)
If m" is not equal to m, the following set is all possible received vectors at receiver 2 which

can lead toaurror.
By(Va, V) =

T (Zl0s (m). va(m, ). %z )N U U U Tpg(Zloa(m”). wa(m”. ). Xy go ).
mw:mr:: i

Define D,(Q. P) = {Vi, V : D(V{|WAlQ. P) < D(V;[[W;|Q. P)}. and
Da(Q, P) = {W4, V4 : D(V;|W2|Q, P) < D(Vl|W2|Q. P)}.

Therefore
elf o, W) = > W (g (m, D) kmag) f(Xmaslm. 1) =

mEMN l'a:" X iJ€0

Il

meMn-lecn ?;;f (Xmaglm. )%
x W,"{ U B,(Vi.W}) U By(Vi. VI‘)ImeJ} <l
WV EDI(Q.F) .

= “'E'&‘:’fefn igr !(xm“d;m' ” o Wlﬁ(ylxm.!.\j) x

x

U Bl(wxq')ua,(v,.v;)lgm
Vi.VieD(Q.F)

< wh aslm.t
me.ﬁlﬁecu 1-,,v;e§.m,m - {ylxmu)lézé' f{x" N[m 5

x |81 (Vi. V)| + [Ba(Vi. 17))] <

exp{=N[D(Vi{lW3]Q. P) + Hq pvi (Y] X)]}
Wi.VeDi(Q.1m)

X 2 S Okaglm. 1) x (B33 V)] + BV V)] 14

max
MEMp.lEC Yy
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where (a) is concluded from the defined error sets for decoding (11) and (12). taking into ac-
count that the W/ (y{%..i;) is constant for fixed Q. V;. we conclude (b); and (c) is concluded
from (3). Similarly error probability of receiver 2 is upper bounded as follows

elf.2.Wy) < max Y. exp{-N[DWValW3IQ. P) + Hgry:(Z]1X)]}x
MMM TN g ViEDIQP)

2 Y J(xmaslm.1) = [|Bs(Va, V3)I}-
7

We shall prove that there exists a code such that for every m € My, 1 € Ly. j€J and
any conditional types Vi, V{. and N large enough the following inequalities are valid

1B.(Vi, V)| < exp{ NHqrw (Y|X)} exp{—N|Ex — D(VIIW4IQ, P)[}. i=1.2.  (15)

Ba(Va, Vi)| < exp{N Hq pw(Z|X )} exp{—N|E; — D(V;[|W2|Q. P)I" }. (16)
Let us note that if the collection of vectors {(Up.Xm1j)}memylecy.jeg satisfy (15), (16)
for any V;, V!, i = 1.2, then (Un¢, X ) # (Um. Xmy;) for (m',V,§') # (m,L.j). To prove
that it is enough to choose V; = V/ and D(V/|WiIQ.P) < E;, i = 1.2. If V/ is such that
D(V!|Wi|@, P) 2 E, then exp{—N|E, - D(V/[|Wi|Q.P)[*} = 1. i =1,2. and (15), (16) are
valid for any [My|, |Lw], |T]-
It remains to prove inequalities (15). (16) for V/ so that D(V}||Wi|Q, P) < E;, i=1.2. Let us
define D)(Q, P) = {V!: D(V/[Wi|Q.P) < E;}. i=1.2.

To prove (15) and (16), it is sufficient to show that for N large enough

(Y ¥ I E(BM.W))) x exp{—N(Ho.pv (Y]X) = Er = D(V[W1|Q. P))}-+
Vi VeDi(Q.r) =12

+Y. Y E(B(Va.Vy)) xexp{—N(Hq.ru(Z1X)~Ea—D(V;[W2lQ. P} < 1. (17)
Ve VJeDLIQ.P)
To this end since the events in the brackets are independent we can write the following
inequality
E(BW.Vihs 2 ¥ Priy € Ty, (Yui(m), ug(m. 1), Xp15)} %

YET py (Y) fm

XPT{y € U Td‘f,._,,:(?]u. [m').u,(m’.!‘).x...uu)}. (18)
Vely, VET

The first probability in (18) is different from zero iff y € T35y, (Y). then for V large enough
17pu (Ui Ua Xy
Pf{y € TQNJ".V: (Ylu:(m},uﬂm.f]-xw.;)} s I';QV{U:UQX” <

< (N + 1) exp{~N|Igp (Y AUhUX)| £ exp{=Nllg.r (Y AX) - gl}- (19)
The second probability in (18) can be estimated for N large enough as following

Prive U T (Yimlm') ma(m'. ). xer 7)} <
Pelw, red
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<Pr{ye ’I}f,.,w()"!u.[m‘}. u. x)} <
a lhxe'fq ,.ll"a.\'!u.{m‘]}

U ——
< Priy € Ty () = EBHEAD < oMl (¥ AU %) o)

From (7) for some V{' we have
|Mn] =1 < exp{NiIq.py (Y AUL) + D(V{IW11Q- P) — By — é]}-

Thus by substituting (21) in (18) and from (19). (20) the conclusion is
Né
E(|B:(Vi, V))]) % exp{N|-Ha pv,(Y1X) = DV [W1|Q-P) + B} sep{-5} (22)

(21)

E(|By(Vi, VY)]) in (17) can be estimated as follows

E(|B2(W1. i = Z z: Pr{y € 73.’9,1!. (Ylu;(mj.ug{m.l),x.,._;,j}}x
Ay €T pvy (Y IUm)

xPr{ye U QJ?P.V,"(YInI[m)'u'.i(m-r)!xm,f'.j'n- (23)
s

We estimate the second probability as follows
Priy € | Trw (Yl (m). va(m.l). Xmrr)} <
s 1reg

<Pr{ye U thfav,'(”u:(m)-u!(m; l'),x)} <
xETH p(X|u1 (m)ua(m.'))

< Pr{y € Tpy:(Y a1 (m), ua(m, 1))} < exp{=Nllo; (Y A UalUh) — ;]}- (24)
By the same way we can prove that the first probability for N large enough can not exceed
exp{~Nllapu (Y AXIU) - 511 (25)
Further from (8) for some V' we have
|Ln| < exp{Nlq.pv; (Y A X|U) + D(V{|W;|Q. P) - By - 6]} (26)
By substituting (26) in (23) and from (24) and (25) we obtain
E(|B3(Vi, )l) xexp{N[-Hq.rv (YIXJ—DU":'Il“’;IQ-I P)+E} £ exp{—%}- (27)
E(|Bs(V2, V3)|) can be estimated similarly.
E(|Bs(V2. ¥7)|) x exp{N[—Hq rw(Z1X) — D(V;[|W2|Q. P) + B3]} < exP{“"’\L"}- (28)

From (22). (27). (28) and taking into account that the number of all V;. V¥ does not exceed
(N + 1)A*UP'HIZD for N large enough (17) is concluded. So by subst.:tul:mg (15) in (14) for
N large enough we obtain

e(f. - Wi) < max > exp{=N[D(Vi[[W1]|Q. P) + Hy.py, (Y] X))} %

EMpy.lECN ViVIED(Q.P)
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#2ep{ ~ Nl Hg v, (Y1X) = DIVIWAIQ. P) + Ex 48]} x 3 f(xenslm. 1) <
€T

< Y ep{-N(Ei-4)} < exp{-N(E, - ¢€)}. e>0.
ViV eThQI") =
where the last inequality is concluded from that the number of all possible 15,17 does not
exceed (N +1)%#11. So the error probability of the receiver 1 decreases exponentially. while
N increases ,
elf. gi. Wy) € exp{—N(E; —¢)}. (29)
The error probability for the receiver 2 can be estimated similarly. Therefore for N large

enough
elf. g2 W3) < exp{—N(E; —¢)}. ¢>0.

It completes the proof.

4. Conclusion

We constructed an inner bound for E-capacity region of the discrete memoryless asymmetric
broadcast channel with an additional point that “stochastic encoding” is applied. The
method of types is used. This study can be useful through out future works which assume
secrecy.
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L. Wijzwp
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wunwhwijwi joquojopiwi gGuhunwlwbp:



