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Abstract

An interval total t-coloring of a graph G is a total coloring of G with colors 1, 2,.....,t
such that at least one vertex or edge of G Is colored by 4, i = 1,2,...,t, and the
edges incident to each vertex v together with v are colored by dg(v) + 1 consecutive
colors, where dg(v) is the degree of & vertex v in G. In this paper we prove that if a
connected graph G with n vertices admits an interval total t-coloring, then t < 2n—1.
Furthermore, we show that if G is & connected r-regular graph with n vertices which
has an interval total t-coloring and n = 2r + 2, then this upper bound can be improved
to 2n — 3. We also give some other upper bounds for the maximum span In interval
total colorings of graphs.

1. Introduction

All graphs considered in this paper are finite, undirected and have no loops or multiple edges.
Let V(G) and E(G) denote the sets of vertices and edges of G. respectively. The degree of
a vertex v € V(G) is denoted by dg(v), the maximum degree of vertices in G by A(G). An
(a. b)-biregular bipartite g-aph G is a bipartite graph G with the vertices in one part all have
degree a and the vertices in the other part all have degree b. An edgecoloring of a graph
¢ with colors 1,2,....t is called an interval t-coloring if for each i € {1,2,...,t} there is
st least one edge of G colored by i, and the colors of edges incident to any vertex of G are
distinct and form an interval of integers. A graph G is interval colorable, if there is ¢ > 1 for
which G has an interval {-coloring. The set of all interval colorable graphs is denoted by N.
For o graph G € N, the greatest value of ¢ (the maximum span) for which G has an interval
t-coloring is denoted by W (G).

The concept. of interval edge-coloring was introduced by Asratian and Kamalian [2]. In
|2. 3 they proved the following theorem.

Theorem 1: If G is a connected triangle-free graph and G € N. then

W(G) < |[V(G)| - 1.

In particular. from this result it follows that if G is a connected bipartite graph and
G € N. then W(G) < |V(G)] = 1. It is worth to notice that for some families of bipartite
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graphs this upper bound can be improved. For example. in [1] Asratian and Casselgren

proved the following e
Theorerh 2: If G is a connected (a, b)-biregular bipartite graph with [V'(G)] = 202+ b)

and G € N, then
W(G) £ [V(G)| —3.
For general graphs. Kamalian proved the following
Theorem 3:[7] If G is a connecied graph and G € N, then
W(G) < 2lV(G)| - 3.

The upper bound of Theorem 3 was improved in [6].
Theorem 4: [6]If G is a connected graph with |[V(G)| > 3 and G € N. then

W(G) < 2|V(G)| - 4.

On the other hand, in [12] Petrosyan proved the following theorem.
Theorem 5: For any € > 0, there is a graph G such that G € N and

: W(G) 2 2-¢)|V(G).

For planar graphs. the upper bound of Theorem 3 was improved in [4].
Theorem 6:[4] If G is a connecied planar graph and G € N, then

W(G) < SV

A total coloring of a graph G is a coloring of its vertices and edges such that no adjacent
vertices. edges. and no incident vertices and edges obtain the same color. The concept of
total coloring was introduced by Vizing [13] and independently by Behzad [5]. An interval
total i-coloring (8. 9] of a graph G is a total coloring of G with colors 1.2..... t such that at
least one vertex or edge of G is colored by i, i = 1,2,....t. and the edges incident to each
vertex v together with v are colored by dg(v) + 1 consecutive colors. A graph G is interval
total colorable. if there is £ > 1 for which G has an interval total ¢-coloring. The set of all
interval total colorable graphs is denoted by T. Fo: a graph G € T. the greatest value of
t (the maximum span) for which G has an interval total ¢-coloring is denoted by W (G).
Terms and concepts that we do not define can be found in [14. 15],

In this paper we derive some upper bounds for the maximum span in interval total
colorings of graphs. g

2. Main Results
Theorem 7: If G is a connected graph and G € T, then
W, (G) < 2|V(G)| - 1.

Proof: Let 1'(G) = {v.v5..... vy} and a be an interval total 1 +(G)-coloring of the
graph G. Define an auxiliary graph H as follows:

V(H)=UuW.
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where

and
E(H) = {uws.uyu| vy, E E(G).1<i<nl<j<n}u{uw]|1<i<n}

Clearly, H is a connected bipartite graph with [V (H)| = 2|V(G)|.

Define an edge-coloring 8 of the graph H in the following way:

(1) Bluiwy) = fAluyw;) = a(vyvy) for every edge v,v; € E(G).

(2) fluuy) = oly) fori = 1,2,...,n.

It is easy to see that f is sn interval W,(G)-coloring of the graph H. Since H is a
connected bipartite graph and H € N, by Theorem 1, we have

W.(G) < V(H)| - 1=2|V(G)| - 1.
thus
W (G) <2|V(G)| - 1.

The theorem is proved.

Note that the bound in Theorem 7 is sharp for simple paths F, (see [10]) and complete
graphs K, (see [9, 11]), since W,(P,) = W, (K,) = 2n —1 for any n € N.

Theorem 8: If G is a connected r-regular graph with [V (G)| > 2r +2 and G € T, then

W, (G) <2|V(G)|-3.

Proof: Let V(G) = {v,m..... u,} and a be an interval total W,.(G)-coloring of the
_ graph G. Define an auxiliary graph H as follows: ;

V(H)=UuW.
where
U={y.u..... U}y
W = {uwn.uy....,w,)
and

E(H) = {wwj, uyw| vw; € E(G).1<i<n.1<j<n}U{uw|1<i<n)

Clearly. H is a connected (r -+ 1)-regular bipartite graph with |V(H)| = 2|V(G)|.
Define an edge-coloring A of Lhe graph H in the following way:

(1) Blww,) = B(uyw;) = alvy;) for every edge vy, € E(G).

(2) Bluww;) = aly;) for i = 1,2.....n.
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It is easy to see that § is an interval W.(G)-coloring of the graph /. Since ;‘; .
connected (r + 1)-regular bipartite graph with [V (H)| = 2(2r+2) and H € N. by
2. we have
W.(G) < [V(H)| - 3 =2|V(G)| — 3.

thus
W.(G) <2|V(G)] - 3.
The theorem is proved. ;
Next, we derive some upper bounds for W,(G) depending on degrees and diamele

connected graph G.
Theorem 9: Let G be a connected graph and G € T. Then

wr(G} <1 +w z d(-"(u}'

veVv(P)

rof a

where P 1s the set of all shortest paths in the graph G. X
Proof: Consider an interval total W, (G)-coloring a of G. We distinguish the following .
four possible cases:
1) there are vertices v,v’ € V(G) such that afv) = 1. a(v') = W.(G);
2) there is a vertex v and there is an edge ¢ such that a(v) = 1, a(e’) = W+(G);
3) there is an edge e and there is a vertex v’ such that a(e) = 1, a(v’) = W2 (G);
4) there are edges e, e’ € E(G) such that a(e) = 1, a(¢/) = W.(G).
Case 1: there are vertices v,2' € V(G) such that afv) = 1. a(v/) = W, (G).
Let P; be a shortest path joining v with ¢/, where

Py = (v,e1,m,€2,...,0, 8, U100 Uk €k Upi1) «

h=v U= v.
Note that
a(e) < 1+ dg(w)

alez) < aley) + dulw).

aley) < olex—1) + de:(vg).
Wi(G) = a(v') = a(vesr) < aler) + de(vesr)-
By summing these inequalities. we obtain
W (G) <

K+l

l+§d€-'{"'r) Sl4max 3 div).

rel’(1")
Case 2: there is a vertex v and there is an edge e’ such that a(v) = 1. a(¢) = V,.(G).
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Let ¢ = v'w and P, be a shortest path joining v with v/. where
P =(vi.e1.v5.03,. .. . U4 €4, Vss1 ooy Uky €k e Vil )

n=v U=

Note that
0‘61} 5 1+ dﬂ(‘ﬂ)l

alez) < aley) +dg(vz),

...............

ale) < alex-1) + do(ve),
W, (G) = of¢) = alve1w) < alex) + da(vi)-
By summing these inequalities, we obtain

; Wf(G'JSHbfda(w)Slﬂ_ng > dolv).
=l veV(P)

Case 3: there is an edge e and there is a vertex v/ such that a(e) = 1, a(v) = W,(G).
Let e = uv and P4 be a shortest path joining v with v/, where
Py = (vy,€1.02. 2,0, Uiy 84, Vi1 - - s Vs €y V1) »

n=v ya=7.

Note that
ale;) <1+ dg(w),

alez) £ a(e1) +dg(va),

...............

alex) < alex-) + da(u),
Wi(G) = a(v) = alvrs) < aler) + de(vrs)-
By summing these inequalities, we obtain
W:(G)
k41

143 delw) <1+ max g(m des(v)
=] rE

Case 4: there are edges e.e' € E(G) such that ale) = 1. a(¢’) = W, (G).
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g ] g
Let & = uv and ¢’ = v'w. Without loss of generality we may assume that & shortest Pt
P, joining e and ¢’ joins v and v'. where

ﬁ_—=[m,e«..tu.eg.....t.r,.c,.u,.,.;.....ug,eg.vg“].
n=v Uy =1v.

Note that
ale)) £1+dg(wv).

alez) < ale) + de(w).

ales) < alesr) +dalue),
W,(G) = a¢) = alv/'w) < ales) + do(vrn).
By summing these inequalities, we obtain

k+1
T <1 Wi = v).
W:(G) <_ fgdr( )‘1+lpg§*§(:”da()

The theorem is proved.
Corollary 1: Let G be a connected graph and G € T. Then

W.(G) <1+ (diam(G) + 1)A(G),

where diam(G) is the diameter of G.
Note that the bound in Theorem 9 is sharp for trees (see [10]) and the bound in Corollary
1 is sharp for complete graphs K, (see [9. 11]).
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Qpwhlbph dhowlwjpuyhl (hwjunwn
bpynuiGbpmy dwulwlygnn gmjGbph wnwybjwgnil
hGwpwinp pih ybphG qGwhwmwlwGlhp

M. U, Mhnpoujwd, b, O owyunppul
Udhohoud

G qpuph \hwhuunwp Gbpynudp 4 = 1,2,....t qoylbpm] Ywljwiblp dhewlw)pw)hl
{hwhuwnwp ¢-Gbpynd, bph undhG dh i gmyGmy, § = 1,2,...,t Ghpldwd & wnbjuql dbl
quiqup Yud Ynn L npwpwlgymp v quqwphl Yhg Yanbpp k wyn quawpp Gbplwd bl
dg(v) + | hwynpnuiljwl qmyGbpny, nabin de;(v)-m] Gwlwipjwd & v ququph wonhEwdp
G gpupnul: Uy wpfuwnwlpnid wwywgniggnud &, np bpk n ququpwlh G Yuwywlgywd
qpupp mbp dhewhuypwihl jhwiwawp -Gbpymd, www ¢ < 27 — 1@ UWdbjhG, goyg t
wpnud, np bpb n ququpwlh G Yuuwuygud r-hundwubn gpuwpp mih dhewlwpuyhd
(hwiuwmop ¢-Gbpinl L n 2 2r + 2, wuyw £ £ 21 - 3 Lwl wnomulpnul
wpund b6 gpwlbph dhewlwipwihl (hwlwwnwp GbpymdGhpmd dwulwlgnn gmyGbph
wnwbpugny)i hbwpunp puh wj) qGwhwwnwlwddbp:



