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Abstract
Interference minimization problem in wireless sensor and ad-hoc networks are
uomidmd.ﬂntistomignaumnisionradﬁsmerhmdeofnuwmk,wme
i:nuuedtdudaiﬂzemtimemminimizthnmimummmWof i
ransmission ranges on each node of network. Additional means of topology control
beaidesﬁnoonnecﬁvilyisblnekinglhelm; line connections at the receiver level.
We propose & polynomial time approximation algorithm which finds connected
network with at most O((opt-logn)®) interference where opt is the minimal
interference of the given network, and 7 is the number of network nodes. The
]owbmmdfurmispmblan,uimnmm]dimnmﬁmismnﬁdued,m
been proven to be O(logn). The algorithm is known which finds a network where
meximun interference is bounded by O(v/n).

1. Introduction

We consider interference minimization problem in energy limited wireless networks (wireless sensor and
ad-hoc networks), On networks where changing or recharging the energy source of nodes is not possible
the reduction of energy consumption is considered to increase the nodes operability time (networks’
Jifetime). One possible approach for doing this is interference reduction on network nodes. Wireless
communication of two nodes which is experiencing the third one is interference on that node. High
interference on & node (high number of nodes interfering on it) makes difficulty to determine and accept
the signals dedicated to it. This makes the necessity to sender node to retransmit the signal which is extra

consumption. Our work tends to reduce colliding transmission by reducing interference on

energy
network algorithmically.
1.1. Interference Minimization In Wireless Networks

Different models of Interference minimization problems have been proposed in literature ;
ﬂ we focus on ll"-jﬂ—_l—_h-‘ inimi: i 1 Gt i | 0,8 o [ [1-8]- ]n-ﬂ“s
r emm_cmuiderisdaefo!lwﬁng:gimasetofnodsmmeﬁcm each node has transmissi
disk of a given radius. Interference on some point is the number of transmission disks inc!udinélﬂlzll
point. Interference of netw:rk is defined as a highest interference among the all nodes forming the
network. lnm-ferznoe_npmn-_nzxtmp problem is to assign transmission ranges to each node and to select
the proper subset of bidirectional links at these radii so that the network is connected through the selected
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bidirectional links and the interference on network is minimal. The main weakness of the distance model
is the assumption that the radio coverage area is a perfect circle. This holds for free-space environment,
and it does not consider the possiblc landscape properties, reflections and diffraction, and the
transmission radius reduction at the nodes by the time. Note that in a radio communication an amount of
energy is also consumed at the receiver node to receive and decode the transmitted signal. A notion here
|su-lreoew:rrudsd'leplchg:hudumdd'mthebodyinfa'mniun.soﬂmwwdlnﬁunufavdidby
lransmission ranges symmetric link of connectivity in the network design stage assumes reading of only
the headers in connections, achieving energy minimization in this way. The same time the most part of
energy consumption is at the information transmission stage. It is known that the transmission power
required by node 1 10 correctiy transmit data to node / 1S at least quadratic hy the distance herween 7
and j [20]. That is it is more convenient from the network capacity point of view that i sends the data to
J wlong several short hops rather than using the direct long connection [19]. Nodes cannot abandon too
many links to far-away neighbors without affecting the connectivity and they may not use an increasing
number of links 1o nearby nodes without increasing the interference. In general this directly leads to a
trade-off between the network connectivity and interference.

The task of computing a subgraph of the given network graph with certain properties, reducing the
transmission power levels and thereby attempting to reduce interference and energy consumption is
known as the Topology Control procedure. We provided a very general problem description at this point.
Interference minimization is ane of the most studied prohlems an wirelese and ad-hoc nenvorks.
Interference minimization problem on one dimensional network (where nodes are distributed along the
line, so-called highway model) was considered in [1]. Authors showed that intuitive algorithm, which
connects each node of a network with its closest right (except for the rightmost) and left (except for the
leftmost) nodes can give a bad performance. An example of network where above algorithm has the warst
performance is the exponential node chain, where distance between two conseculive nodes gows
cxponentially (2°,2',..,2""). [1] Also gives two algorithms for line based case of interference
minimization problem, one finds a network with at most O(+/A) interference (A is the interference of
uniform radius network under consideration) and the another one approximates the optimum for the given
network instance with factor of O(4/A) . Using ideas from [1, from computational geometry and £ -net

theory, [2] proves the O(+/A) interference bound for maximum interference in two and more
dimensional networks. A logarithmic lower bound for approximation of interference minimization
problem under general distance function is proven in [3] by reduction of minimum set cover 1o the
minimum interference problem.

Our result: We present iterative algorithm for basic minimum interference problem which finds
connected network with at most O(gpt-log’ n) interference approximation ratio, where opt is
interference of minimum inlerference conne:tivity network for the input instance of 1 nodes.

1.2. Interference Minimization In Cellular Networks

Below, besides the basic connectivity preserving model for WSN, we refer to one more model of
interference minimization (relation to our work will be given in Section 5) which requires area coverage.
This is cellular networks model that are heterogeneous networks consisting of two different types of
nodes: base stations and clients. The base stations, acting as servers, are interconnected by an external
fixed backbone network; clients are connected via radio links to base stations. Since communication over
the wireless links takes place in a shared medium, interference can occur at a client if it is within
transmission range of more than one base station. In order 1o prevent or control such collisions,
coordination among the conflicting base stations is used Commonly this problem is solved by
segmenting the available frequency spectrum into channels to be assigned to the base stations in such a
way 8s lo prevenl interference, in particular such that no two or a limited number of base stations with
overlapping transmission range use the same channel. The further analysis is formed by the observation
that interference effects occurring at a client depend on the number of base stations by whose
transmission ranges il is covered. A scenario is assumed in which each base station can adjust its
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s, blem of minimizing interference then eons::ss in assigning every base station
transmission POWEr. T,,Tomﬁ“nm the transmission disks of base stations cover some given area (sct of
nlm::o;”] number of base stations covering any point (client) of the covered area is minimum
(cwiﬂnm requiring connectivity between base stations) [4]. : Sntiak

hors of [4] show the nroblem reduction tn the minimum rnemhzmh_ in set cover mmhln_atmgj
;:mm pﬂ)b]ﬂ'l'l and pm that in polynomial time the optlrna.l snlutmp can not be approximated
:ﬁ:dymwiﬂﬁnarnmr O(Iogn).mdzwummmwaw!mmamalgonmmbmdm
linesr program relaxation technique, which asymp!uiu.liy matches the lower bound.
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2. interference Minimization Probiem
i mudnd—hocnﬂm:immisuofmifomlydjmhnehqofmdginauminmNodum
w:ﬂ::i with energy source, computation and wireless communication devices and sensors.
$c consider the scenario where the set ¥V =(¥...%,} of n wircless nodes is spatially distributed on a
i ith distance function d:hv-.kﬁ‘lhemgusigmmﬁ.mior_a RA:¥ - R* assigns
:‘“:'clwh mn‘:“i”ion range to cach node of 2 network, i.e. each _node has the maximum transition range
that it can be assigned and the range assignment function RA assigns to each node a range between zero

and its maximum. J 3 -
Denote by D(v,.RA(v,)) the sel of nodes which are in the lransmission disk ol node v, which has

transmission radius RA(v,), i.c. in the disk centered at v, and having the radius R4(v,).

Bidirectional links simplify communication protocols of network nodes (e.g node v,, sending a message
to v,, may directly receive an acknowledgment of message delivery) therefore only symmetric links
between network nodes are considered. Assuming that nodes v, and v, can communicate if they are
within each other’s current transmission disks (v; e D(v,,RA(v,)) andv, & D(v,,RA(v,))).

Interference on node v, is the number of tmnsmission disks covering the
node v,, f(p')q{Dl[v',RA(v).})fv,EDJ(UI,RA(vJ)),jif)}I and the overall interference of network is
defined as the maximum interference among the all nodes: I(V)-rssgf(v,). At this point interference
minimization problem can be defined as follows: For given set ¥ = {»,,....v,}, of distributed nodes, find a
radius assignment function RA such that the resulting network is connected and the network interference
is minimal. This is interference minimization problem by R4.

By G =(V,%-) we denote the network graph, where (v.v,)e Ec if v and v, can communicate
with each other when their maximum radius transmission disks are considered. Next to the RA the
topoiogy controi prosedure applies the edge subset selection process in E.. in this terms interference
minimization problem can be formulated as finding a connected (spanning) subgraph (factor) # =G,
such that interference /(¥) computed by the selected set of edges is minimal. Formally, having the
subgraph H(V.£.) it is correct to further extract transmission radius for any node v, as a distance
between v, and its farthest neighbor in #, r(v,)-m!l-:n:sd(u,,v,), which avoids the unnecessary
interference.

The following two sections contain some key definitions of technology we apply to the Topology
Conirol for inferf: inimizaiion

3. Minimum Membership Set Cover problem (MMSC)

Set Cover problem is one of the core issues of combinatorial optimization [9, 10]. It is formulated as
follows, givena set § and a collection C of subsets of S, find a subset C’ of C as small as possible,
such that the union of sets in C” covers S . It is well known that decision version of Set Cover is NP-
complete and that in polynomial time the optimal solution can not be approximated closer than with
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logarithmic factor [9) Several variants of Set Cover problem have been studied [4, 11-16]. One of the
variants which we use in our work is Minimum Membership Set Cover [4]; given a set S and collection
C of subsets of S, find a subset C* of C such that the union of sets in ¢ is S and occurrence of each
element from S in selected subset C* 1s minimal.

Mivsis Meusenews Sey Coven (MMeEr)

INPUT: A set S and collection C of subsets of §

OUTPUT: Subset C’' < C such that Uc=S and max|{ce C*\ s c} | is minimal.

The shaous -uml-!.-.. " ....-—n-.-n-l n M‘I -v\lnwd b}r mterfaranca minimizEtian in callular nanunele ul
Lontains lhc proots of NP-wmplelm of decision version of MMSC problem and non-
approximability of MMSC optimization problem by factor closer than O(Inn). Also, by using the
linear program relaxation technique, [4] gives a polynomial time algorithm, which approximates the
optimal solution with factor O(Inn). Below we present the integer program formulation of MMSC
which later will be modified to fit to our requirements. Let C' < C is some sub collection of C and to
any subset C, €C' we have assigned variable x, € {0,]} where x, =1 C, € C’, then the integer

program of MMSC could be written as;

MINIMIZE z
SUBJEC 10 >x 2l ues (1)
LA o]
Dx,Sz ueS )
L

x,e{0l) C,eC (3
Easy to see that any C’ ¢ C satisfying to (1)— (3) is optimal solution to MMSC problem.

4. Minimum Partial Membership Partial Set Cover Problem (MPMPSC)

Before describing our approximation algorithm for interference minimization problem we need to do ane
more important definition. The minimum membership set cover problem defined in previous section
requires finding a sub collection C'c C which is a cover for all the elements of S and maximum
membership is counted within all the elements of S . Below we give a slightly different definition similar
lo MMSC. Let set §=35,US, consists of two disjoints scts S, and S,. As in case of MMSC a
collection C' of subsets of S is given. Then the new postulation is to find a sub collection C* c C such
that the union of seis in C° contains all the elements of S, and the maximum membership wiiich is
counted only within the elements of S, will be kept minimal.

MINIMUM PARTIAL MEMBERSHIP PARTIAL SET COVER (MPMPSC)

INPUT: Aset § =8, US,, S, NS, =@ and collection C of subsets of §

OUTPUT: Subset C* c C such that S, ¢ Uc and m.:x”cst"\se ¢)| is minimal
o 3y

Integer program for this problem will be:

MINIMIZE z
2 - - - 2y
SUBJECT TO 2% 21 wes (i7)
1fimet )
Zx, <z uES, (27
1 imet’}

x,€f0]) C,eC (3
(1") - (2') comprise individual constraints twice less than in (1) - (2). In general, optimal solution of"
MPMPSC is smaller than in MMSC, but we apply the same level of approximation and then it is easy
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to show that the randomized rounding approach with relaxation of condition (3) fnr_m]vins 1)-03)
presented in [4] is also suitable for (1) — (3°) and gives the same approximation ratio, and we skip the
proof or improvements here. To summarize, we have the following.

Theorem 1. For MPMPSC. there exists a deterministic polynomial-time approximation algorithm with
Gatiiation v of Cllog(man{i S, hi 53 11)-

PMPSC. We will compare MPMPSC wilh standard Set Cover

aii app
Consider the complexity issue of M ! pare M

version to the optimization version of MPMPSC. Then we
ision veisioi Of lirsac prubicis.

(SC). First we reduce the SC optimization
justify the issac of reduction of he oo
Lzlubdlrsﬂnmwhcdemﬂpﬁomufpmb!msinqmim. A isa (0,1) matrix of m rows and n
columns. Columns correspond to 7 elements of the initial set S of Set Cover problem, and rows
represent the m subscts (elements of C) that will cover the set S. a, €4 Equalsto 1 iff 5, e§
belongs to ¢, € C.. Inthis terms SC optimization version looks for minimal number of rows which cover
inuml]vsinuchuolu:mofnmrix.SCDu:isimmsionforagivmknsksifﬂnreeximuelecﬁmof
at most k rows which cover the st S'. 1
In MPMPSC optimization two (0,1) matrices 4, and A, are given. n, columns of 4, correspond to
the elements of set S, . 12, Columns of 4, correspond to the clements of sct S,. Rows represent the m
M(muﬂbmof(‘)watmmpmedofdmlsofm S, and §,. Optimization MPMPSC is
to find the set of rows that cover the set S, so that maximal sub-column weight by part of 4, is minimal,
Decision version for & given & asks if there exists a selection of rows which cover the set S, so that sub-

column weights by part of 4, are atmost k.
Theorem 2. MPMPSC decision version is NP -complete.

Pmof We prove the theorem in two steps. We first prove that MPMPSC is NP. Nondeterministic
gmomynudsmmambsdofmmmmdnckmitcovmthamandmb-co[m
weights by part of 4, are at most k . This takes polynomial time.

Next, we reduce the SC optimization to the MPMPSC optimization. Consider an individual instance
SC. This is set S, collection of subscts C and the cormresponding binary matrix A.Comm:nf
individual instance for MPMPSC in the following way. We take S, = 5 and and S, = § U {£}, where
£ is an additional element. Then, 4, = A, and A,=A||I_',whichmm1smnmunﬁonofA with an

additional all 1 column for element & € 5,.
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The figure demonstrates individual instance of MPMPSC composed by the arbitrary instance of SC .
The pant A, is equivalent to the instance of SC and A, and A, are identical to each other.

Here is the transformation of an individual instance of SC 1o the individual instance of MPMPSC
If € is a solution of SC, then the same set is a solution for MPMPSC. ¢’ As the solution of SC
ot ol el Der Ul 1uwo Ll cuver 5. IMIEIMESC Ieyuiles at s soiution (set of rows) ¢
covers the set S, (which is identical 1o 5') and therefore the size of (" is greater or equal to €. In its
turn and because of construction of column £ maximal sum of sub column in condition of € is equal to
ke and so it is not less than k1. To oplimize MPMPSC it is enough to select €= ("

Inversely, if € 1s a solution of MPMPSC, then the same set is a solution for SC. For considered
individual instance of MPMPSC ils solulion (" obeys “the maximal sub column weight is equal to the
size of set cover”. The minimum of this size achieved when the minimal set cover is used but then this is
a solution for SC. This completes the proof of equivalence of two optimization problems: SC and
composed individual instance MPMPSC.

It is very important that for all instances of SC we constructed appropriate MPMPSC instances so
that optimization parameter of SC (size of minimal set cover) 1s equal to the optimization parameter of
MPMPSC (minimax of sub column weights when S, is covered). This proves that instances of
decision SC arc mapped on part of instances of MPMPSC which finally proves that decision
MPMPSC 15 NP-complete.

5. Approximation algorithm for minimum interference problem

Algorithm lakes network graph G = (V, E) as an input and after logarithmic number & € O(logn)
of iterations retums connected subgraph G, € G where interference of network corresponding to graph
G, is bounded by O((opt-Inn)’), where n=|V| is the number of network nodes and opt is interference
of minimum interference connected network.

Algorithm starts its work with the graph G, =(V,E,) where E, =@ . On the /* iteration, rz1,
algorithm chooses some subset f;, < E\E,, of new edges and adds them to already chosen edge

sel E, =—UF, - As a consequence of such enlargement of edge set, interference on graph vertices will
=l

increase in some value depending on F;. Algorithm finishes the work if the graph G,=(V.E)) is

connected otherwise goes for the next iteration. Below we present the way how algorithm chooses the set

ol edges 7o E\E,, on i* iieraiion, Algorithms® quality, i.e the final maximal interference on nodes

(its !.lrrp:lcr estimate) equals to the accumulated through the iterations interferences which we try to keep

mini -

Let G, =(V,E,,) is the graph obtained at (/—1)" iteration, and let G,._, has the set of connected
components C(G,.,)={C},,..C/'). We denote by H,, c E\E,, the set of all edges which have
their endpoints in different connected components of G,_, . In cach step of algorithm a subset of H,, is
selected to further reduce the number of connected components which finally brings us to a connected
subgraph. In this way we build the calicetion T(C{G, ). /1,,) of special sets as follows.

Starting with H,, we add to the set TI((G),).H,,) of I® stage specific subsets

T'(v,v,) = (Gl Gl Dy, d(v,,v,)) 0 D(v,,d(v,.v,)) defined by all (v,,v,)€ H,_,, where C7,
is the connected component where v, belongs to, and Cf, is where v, belongs to. By selection of v,

and v, we have that p#gq. T'(u,.v,) is a composite sel. It includes the two labels for components

C/, and C}',. and all vertices which are incident to end points v, and v, of connection (v,,v,). which
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hmemmﬁmdutofwmgﬂmmmiwimmaﬂummmdg (,,"v‘)
uauwwmmiuﬁmlmk.Tnmwﬂnmlinmﬁmmeimmemmmmir v,
and/or vase!emdﬁrsuimenmjssmporifmismimofumissimradiumbysa[mn
¥, ond that tewm om scverml now points coversd By v, andlor v, first timc at this sicp. So
T'(v,v,) considers larger sets covered and counts larger interference than in reality. Formally, labels
for connected components will compose the st 5, and candidate vertices for interference — the set 5, in

-~
torms of MPMPSC.

"""‘ﬁ;'ﬁmwmmmwﬂumimmﬂemhmu-g”
H,_,of all cross component edges. Bold lines show an edge (v,v,) between the arbitrary two
components C72, and C},, together with other links to vertices adjacent to the end points v, and v, by
the distance d(v,,;) (these may be also points from other connected components which appeared only

nwbyimwadmiimofmdpoinnof{g,vjjj. y
als

(e
sz—l

Cla
ch

After constructing T(C(G,_,), H,.,) we solve the MPMPSC on the set C(G, ,)U¥ and by
collection of subsets T(C(G,_,), H,.,), where condition for elements from C(G,_,) is to be covered and

for elements from ¥’ is to have minimum membership (even zero).
Finally, based on solution W (C(G,.,), H,,) € T(C(G,.).H,,) of MPMPSC we build the set F;

of network graph edges, selected in /* stage of algorithm as follows. We add to F; dll the edges
(v.v,) € H,,, such that T'(v,,v)e W(C(G,.,), H,.,).

The proof of algorithm performance is considered in next section

6. Algorithm performance

Theorem 3: The number of connected components is reduced at least by factor 2 on
each s
of algorithm. which bounds the total mumber of iterations by O(Inn). e
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Proof: For each connected component C7, € C(G,_,) of graph G,_, the solution W(C(G,),H,.,) of
MPMPSC solved at 1* iteration should contain at least one set 7'(v,,v,) e W(C(G, ,), H, ) such that
CfeT'(v,v,) (as W(C(G,.,)H,,) is cover for the set C(G,,)) And as each set
1(v,v,)eW(C(G, ), H, ) comains exactly two connected companents, then by adding the edge
(v.v,) towwlmmmmgedmemmmdmmnuinmamtmﬁn;bymc
edge (v,,v,) ). So every connected component merges with at least one other connected component,
which reduces the number of connected components =1 leact by factor 2

Lemma 1: Network corresponding io the graph G' =(V,F,) (where F, is the edge sel obtained at I*
Heration of approximation algorithm) has interference in O(opt® -Inn).

Proof: Consider the set C(G,,,) =(Cj,,..,C;'} of connected components in /* iterative step of
algorithm. Let E_, is the set of edges of some interference optimal connected network for our problem
(edees of connected network with optimal interference apt ). Then there is a subset £7, C E_ which
spans connected components C(G,,) and the network of the graph G, =(V,E,,) has interference not
exceeding the opf , which means;

Fact I The maximal vertex interference due to a spanner ., of C(G,.,) is at most opr .

Now let us build the set collection T, (C(G,.,),EL,) = (T, v ) v,v)) e EL).

Fact 2: T,,,(C(Gy.,).Eop) is sub collection of T(C(Gy.,),H,.,) built on /* iteration of algorithm and is
cover for C(G,,).

To (OG0 ), Elyy vy )= (T (v,,v, ) € Toge(C(Giy.y ). By, ) vy €T'(v,,v,)} will denote the collection of those
sets from T, (C(G,_,),EL,) which contain v, (at least one of v,.v, interferes on v, ). Now let v, is some
node which has interference on v, .

Fact 3: due to Fact | for each fixed vertex v, the number of sets 7/(v, .v,)e Tt (C(Gy )1 Elyy vy ) will
not exceed the opr .

And as the number of nodes, in a network graph G., =(V,£L,), having interference on v, is not
exceeding the opr , then the cardinality of' St 1,,, (C(Uy.; ), kLy,,v, ) Wil not exceed the opr®,

The Facts 2 and 3 together show that the value of optimal solution of MPMPSC we solve on /*
iteration of algorithm is bounded by .

And approximation algorithm will find solution where each element is covered at most by O(opi® Inn)
times, and as ecach set 7'(v.v,)eT,,(C(G,,).EL, .v) which covers some element v, increases
interference on node v, at most by 2 (both v, and v, may contain v, on their transmission disks). Then
the interference on v, will be bounded by O(apr® Inm).

Theorem 4. The nenwork built by MPMPSC relaxation algorithm has ar most Ol(apt* -In’ n)

interference.
Prool. The proof is in combination of Theorem | and Lemma 1, and in applying O(Inn) sieps each

with additional interference O(opt® -Inn).
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7. Conclusion
imati i i inimization problem in wireless networks
is paper presents approximation algorithm for lnl'.ﬂ'ftfﬂ'lc.e rmrumua ess ne
:': Olopt - In* n) approximation ratio. Algorithm is iterative and 011 each step of uemmf_. the
inimum partial membership partial set cover (MPMPSC) problem is solved. MPMPSC is an
:temion of MMSC and is possible to solve with the algorithm presented in [4]. The MPMPSC
problem we solve at most O(logn) times has two constraints. The HMBMUBr!umbefnfdmnum
hewmedismmmmﬂnnmbaofﬂmﬂzmembﬂshipismbeminimmdmdlhem.,-,
shat each s¢t contains cxactly tWo clements which are from o be :w-.rd’ et '"-.se two constraints will
gemuidemdinﬁ.nuretogetbmuwhmﬁmofMPMPSthlmmumlilgxu.m
approximation for minimum interference problem.
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UGiwp quigbnmid hGnbnbbnbGuh dhGhihawoiwb
dnuwijnp wignpppd

£, Uupulipub
Udthnthnud

Hhunuplyfby t wwp gwlgbpnud hGwbppbpbluh GhGhuhqugiwG fuinhpp, npp
hbwbjul k. gulgh jmpwpwlynip hwlgmyghl Ybpwgpby humnprwlgdwt 2wnuijhn
wylwbu, np qulgn 1hGh Ywwwhgywd L ShuGoyG dudwlwl qwlomd dwpuhiuy
hlwbppbpbliu nilbgnn hwignygh hGunbpPtipblup (hwlignygl plngpynn hwnnpnuygswe
znguililibph pwlwyp) thGh dhGpiwy: Wyu fubnph hudwn wnwewnlynd £ puqiwbnuniwhi
dudwlwlymyd wzfuwwnng dnnwinp wignphpd, npp qubng k YJuwwlgwd gwlg, npnud
Joipupwiliyymp hwlgnygh hlwnbpdbpbup sh gbpwqubgnus O((opt -logn)*) -G: Wyumnbin
opt -p wipdwd n hwlgnyglpny gwlgh dhihduw) hGnbppbpbbub E: 2w jnGh E, np fulinghpp
dbnphiwlwt nwpwdnipymbnud ghuwplbne nhwpnd (npp wfuwnnwlpnud phuwnlywd
nbupl £),  O(logn)-p dnunwpldwl unnphl uwhiwG6 t: 2wynGh b Gwl Puqiwrpudwjhl

wignphpd, npp qunGnud £ juuwlgdwd gulg wnwybjugnyGp O(J;J hGubpdbipbGuny:



