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Abstract
We compare the proofl complexities in Frege systems with a substitution rule with-
out any restrictions and with depth-restricted substitution rule. We prove that Frege
system with well-known substitution rule and Frege system with depth-restricted sub-
stitution rule are polynomially equivalent by size, but the first system has exponential
speed-up over the second system by steps.

1. Introduction

One of the most fundamental problems of the complexity theory is to find an efficient proof
system for propositional calculus. First, we have to make it clear what the notion "efficient”
means. There is a wide spread understanding that polynomial time computability is the
correct mathematical model of feasible computation. According to the opinion, a truly
"effective” system must have a polynomial size, p(n) proof for every tautology of size n. In
[1] Cook and Reckhow named such a system, a super system. They showed that if there
exists a super system, then NP = coNP.

It is well known that many systems are not super. This question about Frege systems,
the most natural calculi for propositional logic, is still open. It is interesting how efficient
can be Frege systems augmented with new, not sound rules, in particular — Frege systems
with different modifications of substitution rules.

It is known that a Frege system with substitution rule has exponential speed-up by steps
over the Frege s ystem without substitution rule [2]. It is known also that Frege system with
multiple substitution rule has exponential speed-up by steps over the Frege system with single
substitution rule [3]. Sometimes we must (can) use only depth-restricted formulas for the
substitution. In this paper a depth-restricted substitution rule is introduced and the Frege
systems with substitution rule without restrictions and with depth-restricted substitution
rule are compared.

We prove that

1) the minimal sizes of the proofs of tautology ¢ in a without restrictions substitution
Frege system and in o depth-restricted substitution Frege system are polynomially
related;

2) the minimal number of steps of a tautology in a depth-restricted substitution Frege
system can be exponentially larger than in the system with substitution rule without
restrictions.
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These results were contributed at CSIT-09 [5] and at Logic Colloquium-09 [6] side by
side with the other results.

9. Main notions and notations

We shall use generally accepted concepts of Frege system and Frege system with substitution.

A Frege system F uses a denumerable set of propositional variables, a finite, complete
itional connectives; 7 has a finite set of inference rules defined by a figure of the
form A].%uh (the rules of inference with zero hypotheses are the axioms schemes); 7 must
be sound and complete, i.e. for each rule of inference A4l every truth-value assignment
satisfying A1, Az, .., Ak 8lso satisfies B, and F must prove every tautology.

A substitution Frege system SF consists of a Frege system F augmented with the substi-

tution rule with inferences of the form - for any substitution ¢ = :" :: :
5 > 1, consisting of a mapping from propositional variables to propositional formulas, ‘and
Ao denotes the result of applying the substitution to formula A, which replaces each variable
in A with its image under ¢. This definition of substitution rule allows to use the simulta-
neous substitution of multiple formulas for multiple variables of A without any restrictions.
The substitution rule is not sound.

If the depths of formulas t;, (1 < j < 5) are restricted by some fixed d (d > 0), then
we have d-restricted substitution rule and we denote the corresponding system by S“F. 0-
restricted substitution rule is named renaming rule.

We use also the well-known notions of proof, proof complexities and p-simulation given
in [1]. The proof in any system ® (®-proof) is a finite sequence of such formulas, each being
an axiom of ®, or is inferred from earlier formulas by one of the rules of ®.

The total number of symbols, appearing in a formula (, we call size of .

We define £-complezity to be the size of a proof (= the total number of symbols) and
t-complezity to be its length (= the total number of lines).

" eTghﬁ::;muﬂ&l fcomplexity (£-complexity) of a formula ¢ in a proof system & we denote
45
Let ®; and ®; be two different proof systems.

Definition 1. The sysiem &, p-£-simulates ®; (D;1<:9,), if there exists a polynomial p()
such, that for each formula , provable both in ®; and ®3, we have £52 < p (€2).

Definition 2. The system @, is p-f-equivalent to system Byrop Bs), i
simulate each other. ®; (@12 D), if &) and &, pL-

Similarly p-t-simulation and p-t-equivalence are defined for t-complexity.

Deﬁniti-on 3. The system $, has exponential £-speed-up (i-speed-up) over the system ®,, if
ﬂmmhamofmh!mﬂu%,mﬂnbkbotbin‘b] and &, that £3! > 20(52)

(152 > 26).

In this paper we compare under the p-simulation relation the proof systems SF and S' F.
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3. Preliminary

For proving the main results we use also the notion of essential subformulas, introduced in
[3]. and the notion of 7-set of subformulas, introduced in [2].

Let F be some formula and S f(F) be the set of all non-elementary subformulas of formula
F.

For every formuls F, for every ¢ € Sf(F) and for every variable p (F)j denotes the
result of the replacement of the subformulas ( everywhere in F with the variable p. If
w ¢ Sf(F). then (F)} is F.

We denote by Var(F) the set of variables in F.

Definition 4. Let p be some variable that p & Var(F) and € Sf(F) for some tautology
F. We say that p is an essential subformula in F iff (F)% is non-tautology.

We denote by Essf(F) the set of essential subformulas in F.

If F is minimal tautology, i.e. F is not a substitution of a shorter tautology, then
Essf(F) = Sf(F).

The formula i is called determinative for the F-rule 4:4=4¢ (k > 1) if  is an essential
sublormula in formuls Ay A (Ag A ... A (Ag—y A As)...) = B. By the Dsf(A,,..., Ax, B)
the set of all determinative formulas for rule 41434 js denoted.

We say that the formula 2 is important for some F-proof (SF-proof) if ¢ is essential in
some axiom of this proof or (7 is determinative for some F-rule.

In [3] the following statement is proved.

Proposition 1. Let F be a minimal tautology and p € Essf(F), then in every SF-proof
of F, in which the employed substitution rules are

A A A
AIUI‘A:U:'“”AJW'

either p must be imporlant for this proof or il must be the result of the successive employment
of the substitutions ;,,0j,, .... g, for 1 € iy.13,....1, < | in any important formula.

r-set, of subformulas for some formula F with the logical connectives &. V, D and - is defined
as follows:

7(F) = {F}Un(F), were

7(F) =0, if F is propositional variable

n(R&F) = T(R)UT(F,), if F = R&F,

n(AVvE)=1R)NT(R),fF=FRVEH

n(R 2 F)=1(R)\7(R),fF=FK2F

n(=F) = 7(F), if F = ~F;, where by 7(F}) is denoted the set of all subformulas of F,
which do not belong to the set T(F}).

Here the following auxiliary statements are proved.

Proposition 2. For every minimal tautology F 7(F) C Essf(F).

At first we will prove some weaker statement: for every formula F, which is neither in the
form of false © F nor in.the form of F; D true, for every subformula ¢ from 7(F) and for
every variable p  Var(F). the formula (F)g is non-tautology.

This statement is proved by induction on the d = the depth of the formula F.
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tional variable and the statement is valid.

If d = 0 then F is proposi
for the all above restriction formulas, depth of

We assume that the statement is true
which is bounded by d.
Let depth of some above restriction formula F is d + 1. We must consider the following

:;?}=ﬁkf'z (F, V Fa), then @ can be
i) Fy&F; (F, V F2) and (F)} = p, which is non-topology.
i) o € 7(F) or (and) ¢ € 7(F3) and (F); = (AR&(FR), (F); = (F), v (FR)),

therefore by assumption of induction either (F1)} or (F2)5 ((F1)5 and (F3)%) must be non-
tautology, hence (F)Z is non-tautology also,
bif F=F” 5 F;. then ¢ can be

i) Fy D F; (see above),
ii) ¢ € 7(F3) \ 7(F1), therefore by assumption (F3)? is non-tautology and because of Fy

is not false, (F)? is non-tautology also,
)il F =-F, then ¢ = ~F; (see above) (note, that if ¢ € 7(F}). then p ¢ 7(F)).

The statement is proved.
Proof of Proposition 2. follows from this statement and from definition of the set essential

subformulas for every tautology.
The notions of positive (negative) occurence of some subformula in the formula are well-

known (see, for example [4]).

Proposition 3. For every formula F if subformula ¢ € 7(F), then every occurence of ¢ in
F is positive.

Proof can be obtained by induction on d - the depth of some occurence of subformula F',

using the definition of 7-set.
We will use later the well-known 0 — 1-numeration of subformulas in some formula F as

follows:
-) the formula F itself is numerated by (1)
-) if some subformula @ = ¢ * (2 (by * is denoted some binary connective) is numer-

ated by (1,...,0n), then i is numerated by (0:.....0,.0) and ; is numerated by

(01,0« 1Oni 1)
-) :{i:?me!::l:ﬁmuh ¢ =~/ is numerated by ().....0,), then ¢ is numerated by

Proposition 4. If formula F has only the connectives D and -
subformula from the set T(F) is in the form of {11 ... l}?:r!h; mbsdwﬂ

Proof follows from the statement of Proposition 3. and from definition of T-set.

4, The main result

In [1] it is proved that every two Frege systems are ivalen

€ polynomial i

:;y length, therf:fore without loss of generality we assume tho};y ;_q i‘: a Ftef'g;elﬂmht.[;)r 81mhmml
anguage contains only the connectives D and —. ot
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The axiom-schemas are:
1. AD(BDA)
2.(A>B)>((AD(B>C))>(A>CY)
3. (A2 B)=((~A>-B)> A)
and inference rule is Modus ponens.
The main result of the paper is the following statement

Theorem.
1. For every fized integer d > 0 SUF ~; SF.
2. SF has exponential t-speed-up over the system S'F,

The proof of the point 1. is based on the result of Buss, who proved that renaming
Frege systems p-f-simulate Frege systems with substitution without any restrictions [4]. By
analogy it is proved that S°F p-f-simulate S9F for every d > 0.

To prove the statement of point 2 we prove that for the formulas

n=mIPm2([@ED-D(E.Om)...) n>2

the following results are true;

157 = O(logy n) and t5.F = Q(n).

The first bound is obtained in [3]. It is not difficult to see that 7{¢,) contains n subformu-
las. In order to obtain the second bound we must note that 1-depth restricted substitution
rule can add only one subformula. whose number contains only ones and which can belong
to 7-set later by using Modus ponens. Using the statements of Propositions 1.-4. we obtain
that ;g:lﬂ 2 cyn for some constant c;.
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uywhiwGuithwl nbhwunpiw juwinGGhph
wpryniGwymnipyntlp

£, Lunpulnub
Wilthmjunud

Junpmpjudp

Uzfuwwnwpnid hwafuwnymd b6 pun wpnwdnwGiph bpynt pupnoipyui plopw-
quphyGbph (bpijwpoip)ni L pujibph pwlwl) Dpbqbh hwiwlwpgh pugqiwih whyugpdwl
L junpoipjwip pwhifwGuwwy nhqupiwd Gwinbnyg bpyne pnuyinuiGhp: Uwwgnigywd
t, op pun wpowdini bpwpmpjui puqiwyh b juspmpjuidp uwhfwfunhwl whnunpiwl
{jwGnGGhpny dpbgth hunfwlupgbpp pruqubnuinpbl hwiwpdtp b, wuljuyl pun puybph
pw(wlh pwqiuih whnqugmiwG yuwininy Spbqbh hudwlwng nbh gmgyuwhG wnuiqugntd
Junpnipjudp uwhifwfunhwl nbnugpiwi Spbqbh hwdwlwpgbph Gundwdp:



