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Abstract

In this paper we study a generalized model of discrete memoryless channel (DMC)
with finite input and output alphabets and random state sequence (side information)
partizily known to the encoder, channel and decoder. The study includes the family of
Gel'fend-Pinsker and information hiding coding problems as special cases. Information
is to be reliably transmitted through the noisy channel selected by adversary. Reason-
ing from applications the actions of encoder and adversary are limited by distortion
constraints. The encoder and decoder depend on & random variable (RV) which can be
treated as cryptographic key. Two cases are considered, when the joint distribution of
this KV and side information is given or this RV is independent from side information
and it's distribution can be chosen for the best code generation. We investigate the
rate-reliability-distortion function for the mentioned model and derive the lower bound
for it.

1. Introduction

The DMC with random state information available to the encoder was studied by Gel'fand
and Pinsker [1], they derived the capacity of this channel. The capacity of arbitrary varying
channel with side information at the encoder was derived by Ahlswede [2]. Error exponents
of single-user, multi-user and varying channels with side information were studied in [3, 4,
5, 6. 7).

It was discovered that embedding and hiding [8] is closely related to the channel with
random parameter, where the cover signal plays the role of the state information. The
difference between the two problems is that in various formulations of data-hiding and wa-
termarking there are distortion constraints for the transmitter and a memoryless adversary
and the channel is not fixed as it is chosen by adversary. Motivated by data-hiding appli-
cations several models are studied, where partial or no information of the state sequence
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12 Lower Bound of Rate-Reliability-Distortion Function for Generalized Channel With Side Information
is available to the encoder, channel designer and decoder. Results on capacity and error
exponents problems have been obtained in [8, 8, 10, 11, 12, 13] .

A unified framework for studying such problems was first suggested by Cover and Chiang
[14], who considered the channel with two-sided state information, where the sender and .t-he
receiver have correlated but different state information. This model includes four possﬂ.Jle
situations of the channel with random parameter as special cases. They obtained the capnt:fW
of this channel and explored the duality with source coding problems. The random coding
boundofE-capadeorthismodelmdurivedin [15].

Later Moulin and Wang [16] studied the generalized model with side information, where
the degraded versions of side information are distributed among encoder, adversary and
decoder. This model includes also the various cases of information hiding. They derived the
capacity formulas and random coding exponents for compound discrete memoryless channels
and channels with arbitrary memory.

In this paper we study a similar generalized model of discrete memoryless channel (DMC)
with finite input and output alphabets and random state sequence (side information) par-
tially known to the encoder, channel and decoder (fig. 1). Information is to be reliably
transmitted through the noisy channel selected by adversary.
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Figure 1. Generalized model of a channel with side information

Distortion constraints imposed on the encoder is called frunsparency requirement and on
the attacker robusiness requirement. _

The encoder and decoder depend on a random variable (RV) which can be treated as a
cryptographic key. Two cases are considered, when the joint distribution of this RV and side
information is given or this RV is independent from side information and its distribution can
be chosen for the best code generation.

We investigate the rate-reliability-distortion function for the mentioned model and derive
the lower bound for it. This function expresses the dependence of the information hiding
rate on reliability and distortion levels for information hider and attacker. This investigation
is equivalent to studying of error exponents but sometimes is more expedient. The approach
was first introduced by E. Haroutunian [17, 18, 19] and developed for various channels
[4, 5, 7, 9, 10, 13, 15]. In this paper we derive the lower bound (random coding bound) of
rate-reliability-distortion function.
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The paper is organized as follows. Definitions of terms and notations used throughout
the paper are described in section 2.. The formulation of the main result and its special
cases are stated in the section 3.. The proof of the theorem appears in section 4..

2. Notations and Definitions

Capital letters are used for RV K, 51, 53, S3,U, X, Y taking values in the finite sets K, 53, S;.
S3.U, X, Y, correspondingly, and lower case letters k., s,.5;. 53.u. . y for their realizations.
Small bold letters are used for N-length vectors x = (z;....zx) € XV. The cardinality of
the set X we denote by |X|. The notation |a|* will be used for max(a,0).

The generalized model of a channel with side information is depicted in Figure 1. A
message m to be transmitted through an attack channel to the receiver is uniformly dis-
tributed over the message set M. The joint state sequence is described by random variable
S5 = (8,53, 53) the components of which represent the partial information known to the
encoder, adversary and decoder, correspondingly. Random variable K represents separate
information known only to the encoder and decoder.

Two cases are considered, when the joint probability distribution

Q" = Q;0Q; 0Q;0Q; = {Q°(k, 81. 52, 5) = Q5(k)Q; (31 [K)Q3(52]k. 1) Q3 (3lk. 1, 52).

k€K, 5 € 8.8 € 5,5 € 53}

is given or K is independent from side information and its distribution can be chosen for the
hest code generation.
It is assumed that:

N
Q'Nﬂt. !1.92|33) — IIIQ.{kI\I' Sin: sﬂlna&l)'

The transmitter encodes the message m using s; and k. The resulting codeword x € AV
is transmitted via attack channel A(y|z, 7). The attacker produces corrupted blocksy € YV,
The decoder does not know A(y|z, s3) selected by adversary and possessing s3 derives the
message m'.

The following probability distributions are used in the paper:

R = Qo0 Q1 0Q20Q; = {Q(k, 51, 82, 83) = Qo(k)Q1 (81 [k)Qa(52lk, 81)Qs(83]k, 51, 55),
k€K, s € 51,5 € 5,8 € S3},
P = Pyo P, = {P(z, ulk, ) = Polulk, 1) Pi(z|u. k.81).2 € X,u €U,k € K, 5 € S}
V = {V(ylk, 51, 82, 83,1, %),y EV.k EK, 8 € S),50 € S3,83 € Sz, uc U,z € X},
Q30 A= {Q3 0 Ay, sslz. k, 51, 52) = Qi(sslk, 81, 82) A(y]z, 52),
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yEV,kEK,8 ES1.5 €S2 83 € 83,z € X},
QP(z,8)= 3. Qo(k) Q1 (2:1|k)Qa(s2lk, 81) Pz, ulk, 51).
kapu
For brevity we will write indices of @ separated by comma, when mentioning the product
of respective probability distributions (or types), e.g. Qo2 = Qo0 Q) 0Qa.

For the information-theoretic quantities, such as entropy Hgoq:.0:(K: 51, 52)s mutual
information Igq,q:.m(U A S1), divergence D(Qol|Q;) and for the notion of type we refer

to [19, 20, 21, 22].
The following properties [20, 21] are used in proofs:
for k € Tgo(K), 81 € Tgo@: (511K), 82 € Tg0.01.0:(Salk;81), X € Tao01.p(X [k, 31), (¥, s) €

T’Q.P.VO" Salxl kv 81, 52)1
Q3 0 AN (v, salk, x,51,82) = exp{—N(Ho py (Y. 3| X. K. 1. S)+

+D(Qs o V||Q3 ¢ A|Qo, @1, @2, P)}. )

D(Qo PoV]||@Q o PoA) = D(Qoa2ll@5,.2) + D(Qa © VI|Q5 2 A|Qo. Q1. Q2. P). ()
D(QIIQ") = D(QolIQ3) + D(@:]Qf1Q0) + D(Qal|Q2IRQ0. @1) + D(Qa"Qil;Qu- @1.Q2), (3)
“Ho.py (Y, 53U, X. K, 51,5) < Hapv(Y. 55X, K. 51. S,). (4)

All logarithms and exponents in the paper are of the base 2.
The mappings di : S X & = R* and d3 : X x Y — R* are distortion functions over

the encoder and attacker correspondingly. They are supposed to be symmetric (d; (s1,z) =
di(z.5) ond da(z.y) = da(y,2),81 €51,z € X,y € Y) and become 0 if 5; =z and z = .

Distortion functions for N-length vectors are defined as:
N ; N
1) = 3 di (o1 7o), 0 Y) = 1 3 da(zi. ).
n=l n=1

Let A; > 0 be the number indicating the allowed distortion level for the encoder and Az > 0
for the attacker.
The N-length code is & pair of mappings (fv,gn), where

_fN:Mx}C” xS{'-—sx",
is the encoding function which satisfies the following distortion constraint:
#.{‘h fN{‘lﬂ'k,B],)} <4, (5)

for all m, k, s, and
; on IV x KN x S — M.

is the decoding function.
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Note that definition of the distortion constraint (5) means that the maximum distortion
constraint is used, which is stronger condition than average distortion constraint over m €
M.k € K" and sy € SF ie. if we find fy satisfying (5) it will also satisfy average distortion
constraint.

N is called code length and |M] is called code volume. The nonnegative number R =
1 log| M| is called the code rate.

The selected channel is memoryless, it means that for x e XV, y € YV and s, € 53":

N
A¥(y|x.52) = [] A(ynlZn: 820)

and it satisfies the following distortion constraint for QPV:
Y QP (x.5,)A" (ylx,£2)da(x,¥) < B (6)
5y XY

A memoryless covert channel P. subject to distortion A, is probability distribution P
such that for any Qg,:

> Qouls1-k)P(z, ulk, 81)d1 (51, 7) < Ay, (7)
LR
The set of probability distributions P satisfying condition (7) is denoted by P(Qo,1. A1).

A memoryless attack channel A. subject to distortion A; is defined by probability dis-
tribution A such that for any Qg2 and P:

Y. Qoaalk, 51.8)P(z. ulk, 1) A(ylz, 82)dz(z,¥) < Aa. (8)
Kooy 02,080
The set of channels A satisfying condition (8) is denoted by .A(Qo,1 2. P, A2).

We will consider cases when the distribution of k is either given or it is independent of
state sequences and it is not given but rather selected in a way to achieve the minimal error
probabiiity.

In the first case the probability of erroneous reconstruction of message m for P €
P(Qp,: A1), A € AlQg) 26 P. A;) is calculated in the following way:

cl(m'A) — e(fﬂ-gNtAl Q.'AI! Azrm) =
= 5 Qi a(k.51,5)Q5" 0 AN (VN x 8} \gik(m)| fn(m. K, 1), k,51,52),
TR
where gyl (m) = {y,ss : gn(y.k.8s) = m}.
In the second case the erroneous reconstruction probability can be calculated in the

following way:
e’fm-A} = G(IN-QN! A, Q.‘ Ay, Alvm) =

n 3 QY K)QiY(s1,52)Q5N 0 ANV x 53 \gyl(m)| S (m,k,51),51,8).

k. 82
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mmdmdvnhleofmmbabiﬁtyofthecodema!lAforgimmmis

by e'(m) = ‘(.vaQ'NnQ-- Ahﬁﬂ’m) = mfxe'(m. A)' i= 1‘ 2.

ThamuimalmprobabﬂityofthecodewerallmEM is equal to:
e = e'(fw, 9N, @ 1, A7) = max e'(m), i = 1,2
mduheswmurpmbabﬂityofthecodemrallmeMis:

;=;T(IN:§N’Q.|AHA2) s I‘M"’T Z '(m)_- i= 1, 2.

meM

3. Formulation of Results
The rate-reliability-distortion function for maximal error probability is denoted by CiE, Q"
A;, A;) and is defined in the following way:

CUE.Q" A, a) = JEL 7 L8 M(E.Q". 80, 80, N),

where ‘
M'(E,Q". A1, 82, N) = {IM] : ¢’ < exp(-NE)}.i=1,2.
N
The rate-reliability-distortion function for the average error probability is denoted by C7(£.

Q’ ﬁh Aﬂ)
We can observe that the rate-reliability-distortion function is a generalization of the

capamtybecauseltmnvergestochmnelcapmtywhemE—o 0. To introduce the main
theorem denote:

R(E,Q",A.Q.P, i"} = Igpv(UAS3, Y|K)—Igeq: AUAS, |k]'+D(Q°PnV|IQ“cPoA)--E.

R(E.Q\ A4y = wmin  max qu..em.m. e o

'R(E, @.A.Q,PV) )

and
R(E,Q, Ay, 80) = T 818: PeP(Gora1) ACAGon 3,P.82) Qs,V-D(Q: M,p,’ﬂfﬁrum AIQo)<E

; |R(E, Q. A.QP. V)r. (10)

Theorem. For generalized channel with distortion constraints imposed on the encoder
and channel, for given Q* and for all E>0,i=1,2

RUE, @, A1,A) S CY(E. Q. A, A) STHE, @, Ay, Ay).



M. Haroutunian, A. Muradyan 17

The proof of the theorem is given in the next section.

Corollary 1. When E — 0, i = 2 we derwve the capacity for both compound discrete

memoryless channel and channel with erbitrary memory established in [186].
C@.01.0:) =, max, mu L, M[lq..u(U A 53, Y) = Ig: (U A S)].

Corollary 2. When S; = (51.53), K = 0, channel is fized, there are no distortion con-

strainls we derive the E-capacity obtained in [15], which in its turn is generalization of the

channels for four possible situations with random parameter.

Corollary 3. When 5; = 0, 5, # 53 we get the semiblind watermarking case [8] and for

Gy = 0.53 = 0 we get the public watermarking case [8, 12]. The lower bound of E-capacity

for the public watermarking problem when i = 1 is established in [9] which also becomes a

special case of the theorem.

Corollary 4. When S, = 5;.53 = 0. K = 0 we get the Gel'fand-Pinsker (1] coding problem.

4, Proof of the Theorem

The proof of the theorem is based on the method of types. We use random bin coding
technique [1] for encoding and minimum divergence method [18] for decoding. Then we
estimate the error caused by both encoding and decoding.

To prove the random coding bound we must show the existence of R satisfying (9) or (10)
(depending on the case we consider) and e' < exp{—N(E —¢)}, forany 0 < < E,i =1.2.
In the paper we present the proof for the case when i = 1. The proof for i = 2 case can be
derived similarly.

In the proof we consider only state sequences types of which are not far (in sense of
divergence) from the given Q".-Other state sequences which are farther from @Q° more than
E are ignored. This can be done because state sequences with farther types cause minor
ErTors.

Denote:

2(Q",E) = {Q: DQIIQ") < E}

and
RekS= U TKS)
QeQ(Q*.E)
We will construct the code only for (k,s) € T g(K, S), because for sufficiently large N, the
probability of (k,s) & T z(K,S) is exponentially small:

oM U mES}= T MK} <
QEAQ*.B) Q#QQ*,E)

< Y exp{-ND(QIIQ")} < (N+1)slalISil exp{~NE} < exp(—~N(E-£1)}. (11)

QEQ(Q".E)



18 Lower Bound of Rate-Reliability-Distortion Function for Generalized Channel With Side Information
where & is positive and small enough. Considering (3) we can see that estimation (11) is
true also for the probability of (k,s1) & 7%, s(K, 51) and (k,1,82) € 73 u(K: 51.5)-

Enoodin_s Scheme

For given § > 0, E > 0, ", any type @ = Q0Q10Q:0Qs € QQ",E), P=PRohE
P(Qos, A1) snd k € TH (K) we choose randomly | M| collections J(m), m € M of vectors
uy(m),j = 1.7 from T, ,(U[K), where J = exp{N (Jgo,.5 (51 A UIK) +6/2)}.

Then for each s; € Td\q,(Silk) we choose such uy(m) from J(m), that u;(m) €
T o,.5(UlK,51). Denote this vector by u(m, k,s1).

If for some 5; € T\ q, (S1/k) there is no such uy(m) in J(m), we randomly choose
u(m, k,81) from T4, a(Ulk.81). Denote by Baogs.(m.k,s;) the probability of this
event. It can be estimated in the following way:

J
Bawaun(m k) = Pe{ () w(m) ¢ Thaun@lkm)} <

< f‘[ (1 = Pr{uj(mJ € Tat.a..&wik!‘l)}) = (1 5 W)J =

J=1
< (1—exp{—N(Iguas,a(S1 AUIK) +8/4})"PINUaoarn (S AIKII < exp{—exp{NE/4}}.
(12)

The last inequality is true because for any n and t € (0, 1) we have (1 —¢)" < exp{—nt}.

The codeword x is constructed in the following way. For each m € M and (k.s; €
74! (K, S;) we randomly choose x(m.k,s,) € T o, p(Xu(m,k,s). k,s1).

We must show that distortion caused be the encoder meets the requirement (5). Taking
into account that P € P(Qq,, A1) the distortion can be estimated in the following way:

df' (s, fw(m.1,k)) = % > N(s1,zls1,X)di(51,2) =

nx

= 3 Qo(k)Q:(s1|k)FPoluls, k)Pi(z|u, 81, k)di (8. 2) £ A,

Tk
where N(s), z]s;,x) is the number of occurrences of s;, z in the vector pair s;.x.
We must also show that distortion caused by adversary meets the requirement (6). The
channel A can variate in the set A{Qu,l.a, P, ﬂg). We have 3

S QP (x s2)A" (5, s, ) = B XY, ¥*) = 1 5 By(a, 1) =

o2.%.Y

= 3 Qoaalk a1, 8)P(z,ulk,8)A(ylz, 52)da(z,y) < A,.

k.ay 002y
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Decoding Scheme

For brevity the pair of vectors ulm. k, s, ). x(m, k.s; ) we denote by u, x(m. k,s;).
Aceording to minimum divergence method each y and s; are decoded to such m for which:
y, 53 € T pulY, Salu, x(m, k,51). k.51.87) and @ = Qo © Q1 ©Q2°Qs. P € P(Qos1. A1),V
are such that

senBin . DQoPoV|[Q oPoA)

is minimal.

The decoder g can make an error, when m € M is transmitted in the case of (k,s:.87) €
T, (K. 51.5,), but there exists m’ # m, vector triple (K'.s},5%). types @ = QpoQic@Q;0
. P £ P(Qp,y. Ay). V' such that

y.53 € T uy (Y. Safu, x(m, k.51). k. 51.82) () T¥ pr v (Y. Salu’. X' (. K', 8}), K, 81, 8)

and

l4[::{@'”"0V'||<;ro1f*'wu«s }D{QnPuVllQ'OPOAJ. (13)

min min
\C AU,y 4 /" Ba AEA(Qo) 2.0

FError Estimation

Denote by D = {Q, P.V.Q', P'.V' : (13) is valid}. The erroneous reconstruction of message
m € M maximal over all attack channels A € A(Qp,2, P.Az) can be estimated in the
following way:

e'(m) = s A X S QY a(k.51.82)Q3 0 AN (VN 57 \g7i k()| [n (m, k. 1), k, 81, 52).

€. Qn.l.:.HA:)h'”

We can split. the sum of the above formula into 2 parts with (k.s,,sz) ¢ TQ‘E.I;.E(K,Sl.S,)
and (k.81,87) € T3 . p(K, 5, 8;). Taking into account (11) the first part can be estimated
in the following way:

ej(m) < Qi 1(k,51,5) < exp{—N(E —&)}. (14)

max
ACAQUIARAD (o, g7l (K.51.50)
The second part. can be split again into 2 parts: error caused during encoding (e3) and
decoding (ef) for (k,s1,82) € 7 (K, 51, 5;). Taking into account that number of Q@ €
Q(Q". E) does not exceed (N +1)KIISi521) and (12) the e} can be estimated in the following
way:

e;(m) < 'Qifa(k-ﬁlssﬂﬂqn.q:.&{m- k‘l’l} <

A P.A
EA(Q0,1.2.P ”(II-II-II)ETQ".'. (K515
0,1,3"
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< exp{—exp{Né/4} + &a}. (15)
The estimation of e} is as follows:

1 =N (k s J
ex(m) < max Qoa2(k, 81,82
ACAQo1a P L) ey m)eTIL | g(K.5152)

@3 o A { U Ty (Y, Salw, x(m. k1) ks, 22) )
D

TQ"N.,P',W(K Sa]“’! x’(m', k’v s’l)' l(| é- 4)|x{m, k, 81}. k. 81, 52} S
migm (sl )T (K51 5a)
3 2 ' |73'.p.v(Y.Sa|u-X(m. k,81), k. 51,52) )
[Ml.lulefgam..txﬁl.&) »
T o (Y, Salet, X (' K, 8,), K., 8. 5))
s (4 )T p(KS1.5)
QN (K, 51,52)@5" 0 AY (v, 8alx(m. k. 31). k. 51..52).

x

x.ﬂiﬂ%ﬁnﬂﬁﬂ
Packing Lemma. For given @°, forany E > 6 2 0, types Q = Qoo Q1 s@;0@Qs €
Q(Q".E), P € P(Qoa, A1) and set of channels A € A(Qo,12, P. A7) there exists a code with

+
IM| 2 exp {Na.vmtonh%-oru)ss |R(E’ oD Fi) = Jl } (16)

such that
1. for each (k, &) € T, (K, $1) w @{(m, k. &) are distinct for different m € M,

2. for sufficiently large N, for any @ € Q(Q",E), P' € P(QG,.41) and conditional types
V,V', for all m € M and (k. &, 8) € T, ,(K, 51, 52) the following inequality holds

ITéN-P-V (YI Ssln! x{m9 k! Bl)! k! By, sﬂ) n

U T p Y, St X (!, k’,s’,].k’.s;.s;}| <
i (8 m)ETE | g i515)

< [T V; Sal x(m, ), om0 exp {~N[E—_ i, D@oPoV'| @"oPo)}.

(17)
The Lemma can be proved by using the techniques established in [15]. Taking into account
(1), (2), (4). (13) and (17) we can continue the estimation of e}:

eim) < b 3 [Tl (¥ Salu, x(m, ). K1, 30)
lh.un}ifé'a, 851 52) D
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-+
4 m’{ = ng % IEAQr:{E.PA:]quOF il ””, }x

: N N, AN
KJu(g.}ﬁplm’Qn.mfkllh—h)Q; o A" (y.sajx(m.k,51). k,55,52) <

< ¥ exp{NHgoa,.0(K.51.52)} 3 exp{NHgpv(Y.5|U. X. K. 5. 5)}
Qo,126Q0Q5 ; 3.F) D

xexp{—.N'IE— D(Q’OFoWIIQ‘oFoA}r}x :

min
AEA(Qy,1 3. P83)

»  max__ exp{—N(Hg,q,a:(K. 5. 52)+D(Q012l|Q5,2)+Hq.rv(Y.S5|X, K. 51. 53)+
AEMGu,1.2.P83)

4 DIQsoV||Q30A1Q0, Q3. Qa. P))} < (N+1) I 57 exp{—N(E+Hg py (Y. S| X. K. 5. 85)—
D

~Hapv(Y.S3lU. X. K. 5,5))} < (N + 1)l 57 exp{—NE} <
QPVQ PV

< exp{—N(E —3)}. (18)
Considering (14), (15) and (18) the overall error can be upper bounded:
¢'(m} = e}(m) + e3(m) + e}(m) < exp{—N(E — &)} + exp{—exp{Né/4} + e2}+

+ exp{—N(E — &3)} < exp{—N(E —¢)}.

Taking into account the continuity of all expressions when N — oo, arbitrary probability
distributions can be considered instead of types. The theorem is proved.
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Upwgnpyn G-hnuwihmpynG-tnmd pmbyghwih unnphl gliwhwwnwlwip
plinhwipwgdwd YaniGwlh hGpnpdughwyny YuwwmnhGtph hwiwp

U. Qupmpyniljw6 b 0. Unipunyul
Udihmpinut

U bnud mumdGwuhpjwd b pighun wowlg hhannmpywl juena plnhwipug-
Jud dnnbip, bpp wwnwhwlwi Jh6wyh hwenprulwinpyminp (ynniGwyh hGpnpiwghwb)
gumGwlpophl hwynGh t YoquynppshG, Juwwmnmb U wwwinnudnphshG: Qpuybu
nhnwplywd dnnbijh dwuGwynp ntwp unwgynul b6 Qhpwln-MhGulbph b hGpnpdwghwsh
pwpgiwl Ynquunpdwl fuGnhplbpp: Hhwwplywd dnpbnud pGpnpiwghwli whwnp t
howwih nqwplibp hwpdwiyonh Yondhg plwpdwd  wninyny  Juwmnm  dhengny:
UppwnnipyniGibphg biGbmy Yynnunphzh U hwpéwipinnh qnponnmpymGGtph Ypw npjwd G
tinuiwl uwhiwGuwwymbbp: Ynquynphsp b wwwinnwynphyp Yufuduo b6 wwinwhwlwi
(pnganfuwtjwlhg, npp Ywpon b ghuwplyby npyby npuynpiwG puGuh: hinwpbuby
b bpym nbwpbp, Gpp wwwuwhwiwl thnholuwiwbh L YoqiGwyh hGpnpiwghwjh
huiwwnbn puwzundp wpfwd t jund wuuwhwlwl hintofuwiwip wiiwiu € YondGuih
paPpnpdwghwihg b Gpw pwziumdp jupnn £ pGupky pujuwgny Yonh unbnddwl hwdwp:
Ztnwgnunjby b wpwgnipinb hnwwhmpimb zinnui pnuGlghw Gzqwd dnnbh hwdwp L
unnigyt npw wnnphl giwhwinwlwip:

Znnwdnud unwgwd k bpym Jhéwluqpnpbl Ywiuywy opjbwibph hwdwlwlwbwihi
puzfuntilibph  wuhwununpbl  oupnpiwy GnyGwlwlwgiwl fulnph pmomdp: Gphnt
wililjwfu opybljnGtiph nhwpnud fuGnhpp manty kp [5]-nud:



