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Abstract

In this paper we present & new, efficient modification of split-radix algorithin for
computing & power of two discrete Fourier transforms. The developed algorithm allows
to 40% real arithmetic operations reduction in comparison with previous best results
for 16-point discrete Fourier transform.

1. Introduction

Applications of linear transforms, such as Fourier, Hadamard, Cosine and Sine sransforms
in signal and image processing are numerous [1]. Cooley and Tukey published their historic
paper on the computation of the Fourier transform in 1965. Overnight. in universities and
Iaboratories around the world, scientists and engineers began developing computer programs
and electronic circuits to implement the FFT. The FFT is a brilliant technique for computing
the discrete Fourier (DFT) transform quickly. By recognizing that the Fourier transform of
& sequence can be derived from the Fourier transforms of two half length sequences more
economically than if the whole sequence is transformed directly and by carrying this concept
through to its logical conclusion of evaluating only the direct transform of sequences of two
terms, Cooley and Tukey showed that the FFT required only O(V log N) operations while the
direct form took O(N?) operations.Any improvement in FFT algorithms appears to rely on
reducing the exact number or cost of these operations rather than their asymptotic functional
form [2]. For many years, the time to perform an FFT was dominated by real-number
arithmetic, and so considerable effort was devoted towards proving and achieving lower
bounds on the exact count of arithmetic operations (real additions and multiplications),called
“flops” (floating-point operations), required for a DFT of a given size [3],[4]. Although the
performance of FFTs on recent computer hardware is determined by many factors besides
pure arithmetic counts, there still remains an intriguing unsolved mathematical question:
what is the smallest number of flops required to compute a DFT of a given size N7?.
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2. 27—point FFT

2..1 Conventional Case

Let = = {Zo,Z1,...,Zn-1}" be a complex valued column-vector of length N (N = 2?). The
forward and inverse 1D DFT of this vector are defined as

1 N=1
Xin) = 5 3 =kW3E,
=0
N-1 (1)
zik] = 3 Xn]Wy™, n=0,N-1,
=0

where Wj = exp(—j%n) = cos($n) — jsin(¥n), j = vV-1.
Represent. the forward transform as follows (here and later the coefficient 1/N is omitted)

Nj2-1 Nj2-1
Xn)= Y z2kWih + Wi 3 zl2k + 1[WRj,. (2)
k=0 k=0
wheren = 0. N = 1.
Introduce the notations:
N/2-1
Yoln] = Z :{Qk]Wﬁ,.

k=0 @)

Nj2-1
Yiln) = 3 z[2k+1)Whf;, n=0.N/2-1.
k=0

Note that Y[n] and Y;[n] are N/2—point forward DFT.
Hence. the equation (2) can be represented as follows
X[n] = Yoln] + WEYi[n],
X[n+N/2] =Yoln] - WgYiln],n=0,N/2—1.

It is easy to show that

(4)

wh=1, W =41-j)
Wt =—j, Wyl*=—4(1+;).
Therefore, the realization of W§Y;[n], for all n needs only (N — 4)-real addition and

(2N — 12)-real multiplication operations. Storing this results we can calculate the necessary
operations for N—point DFT given in equation (4), i.e. we obtain

Cf; =3N —4+2C%,,

C} =2N —12 +2C, ®)

where Cf; and C} denotes the number of additions and multiplications of N—point DFT,
respectively.
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Finally, from relations (5) we can obtain

C =3Nlogg N —3N +4, ®)
Ck=2Nlog, N—TN+12, N >8.

Note that Cf = 4,68 =0, Cf =16,Cf =0. In the next table some numerical results
are given

Teble 1
Add ul Total
2 4 0 ]
4 16 0 10
8 52 4 56
18 148 8 176
n 388 108 496
64 964 1296
128 2308 908 az16
256 5380 2316 T696
512 12292 5644 17936
1024 27652 13324 40076
2048 61444 30732 2176
4006 | 135172 | 69644 | 204816
8192 | 294516 | 155660 | 450576
16384 | 638960 | 344076 | 983036
32768 | 1376260 | 753676 | 2129036

3. Modified FFT

3..1 Conventional Case

Let z = {0, 1,-.-,Zn-1)" be a complex valued column-vector of length N' (N = 27). The
DFT of this vector can be represented as (the coefficient 1/N is omitted)

l

g
X[n] = =[2klwg' +Wj z[uc + W + Wi Z z{4k + 3|WE. (M

wheren=0,N —
It is not d.lﬁicult to show that with assumption
z[—1] = z|N — 1] we have
S -1 |
i~ .,z.:o zldk + 3WE* = Wy Z:o zlak — W
Therefore the equation (7) we can rewrite as following
-1

£ gy
X[n] = E z[4k|Wg* + Wy, .,z.:u zlak + W + W" E zlak — WE, (8)

wheren=0,N—1.
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Introduce the following notations:
= WiYiln] + Wg™Yaln),

Sp=WiYin]|-W5™Yan], n=0.N/4-1;
Nj2-1

%[n] = z :[-Ik]Wj',f,, n=0, 2- 1.
k=0
Nj4-1

Yiln] = Y zldk+1]Wrf,
k=0
Nfi-1
Yalnl= Y z[dk—1Wpj,. n=0,N/a—1.
k=0
Hence, N = 2°—point DFT can be computed by the following formulae
X|n] = Yon]+ AR,
Xin+%] =Yoln+ %) - iSk.
Xn + 4] =Yoln] - AR,
Xn+*¥| =Yoln+ ] +3Sy. n=0.N/a-1.

3..2 Complexity Evaluation

7

9)

(10)

Now we calculate the necessary operations for DFT presented in (10). At first using the

properties of exponential function W we have

wy =1, wir=2a_j)

Therefore, the realization of A} requires ;-N —4 and 2N — 12 addition and multiplication

operations, respectively. The realization of S} requires only N/2 additions.

Thus, the necessary operations for realization N—point DFT presented in (10) can be

obtained from the following formulae
Cx = 4N — 4+ Cj, +2Cy,
Cf =2N -12+Cj, +2C5,. N=8.
Using the theory of difference equations [6] we obtain
Ch =3Nlogg N — BN — 3(—1)oe¥ 42,
CX% =3Nlog, N — N + §(—1)aN 16,

In Table 2 some numerical results are given

(11)

(12)
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Table 2
N Wl | _Toal
2 I i
4 16 0 16
8 52 4 56
16 | 144 24 168
22 | 84 458
o4 | o2 | 28 | 160
128 | 2184 | 660 | 2824
256 | co08 | 1656 | o084
512 | 11380 | 3968 | 15368
1024 | 25488 | 9338 | 34824
2048 | 56438 | 21396 | 77832
4096 | 123792 | 48248 | 172040
8192 | 269428 | 107412 | 378840
16384 | 582544 | 236664 | 819208
32768 | 1252468 | 517012 | 1769480 |

4. New FFT algorithm with fewer flops

L 4,1 Efficient Implementation of FFT
We will perform DFT by two steps. At first we introduce some notations:
Tig = [1 — jtan 2En).
CIN. n] = cos(3Inmod N/4)). b
where Y;[n], Ya|n] are given in (9). Note that

W4 = Tn.ncos 2171.

N

Using this notations now we represent N = 2*—point DFT from (10) by the following

two steps
Step 1: n=0,1,...,.N/4-1.

Xln) = Yoln] + (WECIN/4.n]Yi[n] + WR"CIN/4,n]Ya[n)).
Xin+ 4] =Yoln + ¥ - j(WECIN/4,n]Yi[n] — W5"C[N/4,n]Yan]).

Xin+2Y] =Yoln] — (WRCIN/4.n}Y; n] + WiC[N/4,ni¥in), o
Xin+%l] =Yoln+ ¥+ {WRCIN/4,n]¥iln] — W"CIN/4, n]¥aln]);
Step 2: n=0,1,...,N/16 — 1.
Yilnl = Yiolnl/cos i + (TwjanYialnl + T nYialr]),
Yiln+ 8] = Yioln + &)/ cos Fin — i(TwuaYusln] - Ty Yialn)),
(15)

Yiln+ %] = Yioln]cos $in — (TwunYar[n] + Ty, Yialnl),
Yiln+35] = Yioln + f§1/ cos #5in + i(TwjunYus[n] — Tyya , Yialn)),
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Yiln] = Yaln]/cos #5n + (TnpuaYaln] + Ty nYaaln)),
Yaln + §£] = Yaoln + £/ cos 35in — i(TwpanYan[n] — Tiye n¥aln)),
Yaln + 3] = Yaoln]cos #5in — (TwjsaYa In] + Ty o Yaaln]),
Yaln + 3] =Yaoln+ #£]/cos ﬁ;n + §(ThpanYnn] — Ty, . Yaaln]),

(16)

4..2 Complexity evaluation

Now we calculate the necessary operations for DFT presented in (14)-(16). At first using
the properties of cosine and expanential functions we obtain

W"msﬁf-—én— 1, if n=0. (17)

wheren=0,1,.... N/d - 1.
Forn=0.1....,N/16 — 1 we have
e Jrl ik n=1,
SN =\ 4. if n=N/32, a8
A 1, if n=0,
=1 1-j if n=N/32
Therefore, without taking the operations for Yg[n]. Yi[n]. and ¥a[n], we can calculate the
necessary real operations for computing the terms X [n]. X[n+&], X[n+2¥], and X|[n+ %]
from equation (14) for all n = 0. NJ4 — 1(see Table below).
Table 3
[ Expression | Add Mul
X[n] |2N-4|2N -8

Xn+ 7] N 0
Xn+ & N 0
X!n+ﬁ3 N 0

Now we can calculate the number of real operations for computing all component X |[n]
(n=0,N—1, N > 16)

C} =4N -4+ C}, +CY, +Cf,
C% =2N-8+C¥ +Cy +C¥,

where Cy, and C}, are the complexity of N/2—point DFT, and C¥,, C}; and Cy,, C; are
the complexity of transforms given in (15) and (16), respectively.
Now we define the necessary real operations for the terms
TnpanYi[n] £ Thye nYaalnl, ThpanYn [n] £ Tys 0 Yazln)

without taking the operations for terms ¥i;[n], Yia[n], ¥ [n], and Yaa[n] (see (15) and (16).
At first we have

(19)

Typo=1, Tnpwm=1-3].
Hence, we obtain
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Table 4
“Expression Add Mul
TjanYuln] + TupunYuln] | gN—4 | N -8

TnjsnaYuln] — TnjanYuln] | N 0
IN-4|IN-8

TjanYalnt] + ThyasYain

TNfl.nYﬂ {ﬂ = T}:}'{MYHI“ i‘N 0
Now using the results of Table 4 without taking the operations for Yifn], i.7 = ?, 1,2

(see (15) and (16) we can define the operations for realization of Yi[n],n = 0, N/4 — (see

Table below).

Table &

Expression | Add Mul
Yiln] sN—4|2N-10

1(1§g+4'!IE N | sN-2
Yiln+ v 0
Yin+ 55 N 0
Note that for Ya[n] the number of required operations is the same as for Y;[n]. Now

using the results of Table 5 we can calculate the number of real operations for computing
all components of Y;[n] and Y3[n] (n =0.N/4—1, N > 32)

CE=N—4+C'}";“+C'}';.+U¢I,‘ {20)

Cy, =iN—-12+C§ +C¥, +C¥.,.
It is not difficult to show that

C% =C{, Cx =Cx,

C¥, = Chp O, = Chpas

c‘;lu e OI'L - C.lt' i

C;m = clxh = Ca':'[l'

c;":l =C\21 =Ci’.-'|a=ci“:n=c;ﬂs'

Cl"‘h = C“,;: = G;u = C;;, = C;Illl'
Finally using the equations (19),(20) and the identities (21) we obtain the complexity of

N—point DFT as

(21)

Cj =8N —82+Cjipp + 2C}s +4CK)s6.

Optimization by hand for N = 16 has allowed us to save 32-additions and 16-

multiplications in comparison with algorithm 3 (see, section 3). Using these results and
relations (22) we can obtain

C = §Nlogy N — 3N — faiyVN — (-1)eN 1 2,

CX = $Nlogy N — &N — oy VN — (~1)mn 4 18,

Velues of a}; and a are defined in Table 6

(22)

(23)
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Teble 6
(loga Nimedd) | afy | afy |
0 B 2
1 vz | Z
2 —4 | =2
3 | —v2|—%Z

In Table 7 some numerical results are given.

Teble 7
N Add Mal | Towl |
112 B 120 |

a2 332 72 404

& 72 240 1112
128 2044 624 2668
256 4648 1536 6184
512 | 10780 | 3808 | 14388
1024 | 24488 | 0056 | 33544
2048 | 54236 | 20736 | T4OT2
4096 | 118952 | 46752 | 165704
8102 | 260188 | 104640 | 364876
16384 | 564904 | 231456 | 796360
32768 | 1216348 | 506170 | 1722524

5. Complex multiplication with 3 real multiplications

wd.

5..1 Modified complex multiplication

Below a method is presentedwhich allows us to do complex multiplication with 3 real mul-
tiplications and 5 real additions. Multiplication of two complex numbers (a+jb) and (c+jd)

means

(a+ jb)(c + jd) = (ac— bd) + j(ad + bc) (24)
We can represent the real part of (24) us as the following
(a — b)d + a(c — d). (25)
And the complex part
(a—b)d + b(c + d). (26)

For realization of (25) we have 2 real multiplications and 3 real additions. (26) requires 1

real multiplication and 2 real multiplication given that (a—b)d is already computed. Finally
we get 3 real multiplication and 5 real additions.
Assuming that our second complex number (¢ + jd) has form (sin ¢ 4 j cos ¢).Now assum-
ing that (sing + cos¢) and (sing — cos¢) are pre-computed this scheme can take only
3-real multiplications and 3-real additions (More about FFT algorithms that use scheme
3-multiplications and 3-additions see [7],[8]).
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5.2 Complexity evaluation
Udngmethudspmmdhnwtiontﬂforﬁmwepm;n: these recurrence relations

C% = 4N -10+C¥, +C5, +C¥, @)
C} =3N -6+Cy, +Cy; +C,

For evaluating 2-step of algorithm we use standard multiplication scheme with 4 real addi-

tions and 2 real multiplications. Finally we get
C'N." = L}N — 18+ C;'n + 20;:” + 4C;f1|! (28)
Cj = &N — 30+ C}jyp + 207 + 4C s
C =¥Nlog; N — BN — Lo VN — g (-1)=" + 3,
C}%=¥Nlog; N - 2N — fiayVN - P(-1)aN +5.

(29)

Values of o}y and aj are defined in Table 8

Table 8
loga N(modd) | oy ay |
=730 98 74

1 11v2 | 232 |
2 —98 | —ra
3 —11v2 | =232

Some numerical results are shown in Table 9

Table 9
N | _Add | Mal |
5] 38 5 |
64 | 1012 | 196
128 | 2388 | 518
256 | 8800 | 1218
512 | 12874 | 2150
1024 | 20336 | 7800
2048 | 6242 | 17214
4096 | 143092 | 38828
8192 | 315322 | sse7e
16384 | 680092 | 192230
| 32788 | 1480186 | 420638

6. FFT for Real Input Vector

For computation DFT of real input we can use algorithms of complex FFTs. Algorithms
which compute real-FFT via complex-FFT are simple and based on property of hermitian-

symmetry
Xfn] = X*[N —n, (30)
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where X*[n] is a conjugate of X[n].

The complexity of real-FFT is
CH(R) = }Cx — (N -2),
Ck(R) = }C%.

Using 31 we can get

e for the algorithm in algorithm 2(presented in Section 2)
CH(R)=3Nlog; N — iN +4,
C%(R) = Nlogg N — IN +6.

e for the algorithm in algorithm 3

CH(R) = iNlogy N — BN — §(-1)=" +4.
C%(R)=3Nlog, N — N + }(-1)ua¥ + 3,

e for the algorithm in algorithm 4

C{(R) = §Nlogy N — 4N — jaf VN — §(—1)e" 44,
AR = Vo N — 4N — Jof/ W~ H-¥ 4§

where values of aj; and aj; are defined in Table 6.

(31)

(32)

(33)

(34)

We can use methods in [6] to obtain fast algorithms and their complexities (such as 32,

33, 34) of discrete sine,cosine and Hartley transforms from presented algorithm.

7. Comparison results

In 2007 Steven Johnson and Matteo Frigo presented [3] new FFT algorithm which has fewer
arithmetic operations than all known FFT algorithms. Graphical presentation of comparison

results for algorithm 4,Johnson-Frigo algorithm and algorithm 3.
Algorithm 4 requires fewer arithmetic operations up to N < 2'?
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Figure 1. Flop counts of algorithm 4, Johnson-Frigo algorithm, algorithm 3.
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Wihmhout

Whwnwmipmd Suipjwd t jupnjwd hhdpm] dmpjbh wpwg dluhnfunpjwi
Gop, wpymbunftn dlanhnfuwd wignphpip: dlwhnfujwd wignphpih bhiiwG Ypw
oupwnhdwiwgyby t 16-sunhwlh yhlwmoph dlwihnfunpmbp, oph hbnlwGpoy wwhwGgynn
hpwljwb prwpwGuljwi qopdnnmpniGibph puwliwlp Gwqby £ 40% -myj:



