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Abstract

let G be an oriented graph of order p > 3 and minimum semi-degrees at least
[p/2] — k for a positive integer k. For a subset C of vertices G, we obtain sufficient
eondizions implying that for any pair of distinct vertices z,y € V(G) — C there is a
path fram z to y of length less than a given integer which does not contain the vertices
of C.

1. Introduction and Notation

In: Lhis note we shall consider finite directed graphs ( digraphs ) without loops and multiple
ares.We use the standard terminology and notation on digraphs as given in [1]. We still
provide most of the necessery definitions for the convenience of the reader. An oriented
graph (orgraph) is a digraph without cycles of length two. The vertex set and the arc set
of an orgraph G are denoted by V(G) and E(G), respectively. If zy is an arc of G. then
we say that z dominates y and y is dominated by z. For two subsets A. B C V(D) with
AN B = 0. we define E(A — B) as the set {zy € E(D)/z € A.y € B} and if every vertex
of A dominates every vertex of B, then we say that A dominates B. denoted by A — B. If
A = {z} then we write z instead of {z}. The outset of z is the set O(z) = {y € V(G)/zy €
E(G)} and I(z) = {y € V(G)/yz € E(G)} is the inset of z. Similarly, if A C V(G) then
O(z.A) = {y € Alzy € E(G)} and I(z,A) = {y € Alyz € E(G)}. Let A =V(G) - A.
The out-degree of vertex z is od(z) = |O(z)| and id(z) = |I(z)| is the in-degree of z. We
define od"(z) = V(G) = od(z) — 1, id*(z) = V(G) — od(z) — 1, od(z, A) = |O(z, A)| and
id(z, A) = |I(z, A). The suborgraph of G induced by a subset A of V(G) is denoted by (A).

For integers a and b, (a < b), let [a, b] denote the set of all integers between a and b and
for any number ¢ , [c] denotes the integer part of a.

The path consisting of the distinct vertices z;.23,...,Z, ( n = 2) and the arcs z;z;41,
i € [1,n— 1], is denoted z; 23 -+ - Z, and is called an (zy,,)-path. The length of a path is
the number of its arcs. Let z and y are two distinct vertices of orgraph G. Denote by d(z, )
the length of a shortest (z, y)-path in G, if exists. If A € V(G) and z € V(G) then for a
positive integer s let 0%(z, A) = {y € A/d(z,y) = s} and I'(z, A) = {y € A/d(y,z) = s} .

Note that the problems considered in the note and conserning short paths in orgraphs
arise, in particular, st routing stage of VLSI desgins [2].
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2. Preliminary Results
cheginwithssimplslemmawhichisundinproofsufTheorm 1-5.
Lemma 1. If G is an orgraph of order p 2 3, then G mtainaumﬁmzaﬂdvl"f_l“"du-
respectively ) with od(z) < (p—1)/2 and 0d*(v) 2 [p/2] ( id(u) < (p—1)/2 and id*(v) >
[p/2], respectively).
In the following throughout this note, G will denote an orgraph on p vertices. with the
minimumsmﬁ-desreesatlmtn—kwhmﬂ=lpﬂ]a.udk2!.
Observe that for each vertex z € V(G) ,
ifp=21|+1thenod'(z)sn+kandid'(:]5ﬂ+k,
lfp=2nthenod"(=]£n+k—1mdi¢'(:}£n+k—1.
Now let us prove the following

Lemma 2. Let C C V(GJ: | C |=mmd:e V{G)_C. Mfofmchintegers,
2< s < p—m—1, the following holds

min{]| H 0'(z0); | QII‘(:I:,U) [} = a(m, k, s).

where ; I
ol e

Proof. Without loss of generality, we only prove that {| Ui, O'(z,C) |2 a(m, k. s) . The
proof is by induction on 5. We have that | 0'(z.C) |> n — k — m. and. by Lemma 1. there
is a vertex z € u::,‘o*(:,a) S

odtz.Uo'(z,a)< [@@Lﬂ
=] Z 2 .
Hence it is easy to see that .
|0, 0) 2 n—k—m— L2EO)| 1
and if 8 > 3 then
IO'IZ.E)IZﬂ—k—m_l_.I__U_E%' =
Therefore

L Ynk=m)+1

2
(2)
and for s = 2 Lemma 2 is proved. So we may proceed to the induction step, assuming that
Lemma 2 is true for s — 1 > 2. By the inductive assumption we have ‘ 2

|:l_:!: 0'(z,0) |2 @' -1)(n —21::3 m) — 2*-2 +3'

lol(‘-‘ha}l"'lozfmc)'zl ol(._,:!m | H—k—m_lo‘(xl?l—l
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Henee from (1) it is not difficult to see that

| Uo'rz.z‘) [=|UO‘(:.Z'J | +]|0'(z,C)|2n—k-m—1 +L‘f“-:-1'93%'9-)-|-ﬂ >
il =]

5n—k"m—1+r2. IJ{;._lk m)+32(2‘ 1)(n ;,-lm) 21+3

This completes the proof of Lemma 2. W

3. Main Results
Theorem 1. Ifn > 2k + 1 then d(z.y) < k + 2 for all two distinct vertices z.y € V(G) .

Proof. Suppose, on the contrary, that there are two distinct vertices z and y such that
d{z.y) 2 k + 3. We consider the following two cases. W

Cace 1. k=2g—1andg=1.

It is easy to see that for any i, §, (1 €. < g) we have O'(z) N I/(y) = @ and

(] [ e
E({z}u UU'{:!:] — {y}u U I'(z)) = 0. (3)
=i d=i
First assume, that g = 1, i.e. k= 1. Since | O'(z) |2 n -1 and | I*(z) [= n — 1, then,
by Lemma 1 and by (3) for some vertex z € O'(z) we have

ﬂ+120§'(:]2ﬂ+1+[%].

i.e. n < 2, which contradicts n > 2k + 1.
Now assume that ¢ = 2, i.e. k = 3. Using (2) and (3) with Lemma 1, we coclude that
there is a vertex z € {z} U O'(z) U O%(z) such that
n+k>od(z) > 3"_:“'1 +1+ 3"_:“'1.
Therefore n < 6, which contradicts n > 2k +1=T. 1
Finally assume that g = 3. Then, by Lemma 1 and 2 and by (3), there is a vertex
z € {z} UUL, O'(z) such that

(2'—1}{n—k}+3+ (22-1)n—k)—2""+3
2L 29 ;

n+k=od(z) 2

From this we obtain that

which is a contradiction.

Cace 2. k=2¢--2 andq 2 2.
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For each pair 4, j {1s:'.sq.15j5¢—l}mmo‘(=)m”(=)=0wd

E ({z} u ['J’o'(z} — {y} u:L:j: I‘(y}) =0. (4)

Assume that g = 2, L.e. k=2. Using (2) and (4) with Lemma 1. we conclude that there
is a vertex z € I'(y) such that
3n—3k+1 n—k-—1

n+k=id'(z) 2 ) + ) +2.

Henoeﬂsak—2=4,whichconhradicmthatn25.
Now assume that ¢ > 3. Then, by Lemma 1 and 2 and by (4). there is a vertex z €

{y} VUL I'(y) such that

ntk>id'(z) =

@ -1)(n—K+3 , @ -1)(n—k —22+3
201 * 20-1 ‘

It follows easily that e
n52k+—w <2k+1.

This contradicts that n > 2k + 1. The proof of Theorem 1 is completed.

Remark 1. Let D be an orgraph with vertex set V(D) = {z.y. ».v.w} and arc set E(D) =
{zu.yz. yu. uv,vw, wy,wr}. It is easy to see that d(z,y) = 4, i.e. for k =1 and n =5 the

Theorem 1 is not true.

Theorem 2. Let either p=2n andn > 2%k +1,5m — 0,25+ (3k + 1.5m — 9,75) /(2" —3)
orp=2n+1andn > 2k+1,5m+0,25+ (3k +1,5m — 8,25)/(2"*" — 3), where the integer
s>2 IfC C V(G) and | C |= m, then for each two distinct vertices z and y of C in
suborgraph (C) there is an (z,y)-path of the length at most 25 + 1.

Proof. The proof is by contradiction. Suppose that there exist two distinct verticex
z.y € C such that each (, y)-path in suborgraph (C) has length at least 25 + 2. It is not
difficult to see that zy ¢ E(G), O'(z,C)NI¥(z,C) = 0 for each pairi. j (1<4i,j <s)and

E({z}u 9 0'z,T) — {y}u H M=T)=0.

Hence, by lemma 1, there is a vertex z € {y} UUL, I'(y. C) such that

i(z) > {z}u ) 0'z,0) | + [w] L
fom]

Therefore, it follows from Lemma 2 that

3(2*-1)(n—k—=m)—2"149
20 y
Assume that p = 2n + 1. Since id*(z) < n + k, then from (5) it follows that

2°(n+k) 232" —1)(n—k—m)—2""+9

id*(z) > (5)
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and
= (B2 -3k +m)+27(2k+1) -0
2 223 ;
Therefors 3k +1,5m — 8,25

n52k+1,5m+0.25+—-—2-7+T,

which is & contradiction.
Now sssume that p = 2n. Then id"(z) < n—k — 1 and we obtain a contradiction as in
case p=2n+ | by the similar way. This completes the proof of Theorem 2. B

Theorem 3. Let either p = 2n and n > 2k + 1.5m — 0,25 + (2k + m — 5,5)/(2" — 2) or
p=2n+1l and n > 2k + 1.5m + 0,25 + (2k + m — 5.5)/(2° — 2), where the inleger s > 3.
IfC c V(G) and | C |=m, then for each two distinct vertices z and y of C in suborgraph
(VC) there is an (z,y)-path of length at most 25.

Theorem 3 can be proved by similar arguments used in Theorem 2.

Theorem 4. Let either p=2n+1 andn > 5k +3m —2 or p=2n and n 2 5k + 3m — 4.
IfCcV(G)and|C|=m 20, then for each two distinct vertices z,y € C in suborgraph
(C') there 15 an (z,y)-path of length at most 3.

Proof. Suppose. to the contrary. that there are two distinct vertices z,y € C such that
in (C), d(z.y) = 4. Then zy ¢ E(G) and

0z,C)nI'(y.C) = B(0'(=.C) - I'(y,T)) = 0.

Since | 0'(z,C) | and | I'(y.C) |= n—k—m. then, by lemma 1, there is a vertex z € I'y.O).

such that
id'(t)zn—k—m+2+“"k;m'1 23"—3k2—3m+3.

Hence, if p= 2n+ 1 thenn+k > (3n —3k—3m+3)/2 and n < 5k +3m —3. and if p=2n
then n4 k — 1 > (3n — 3k — 3m + 3)/2 and n < 5k + 3m — 5. Thus in each case we have a
contradiction and Theorem 4 is proved.

The following remark shows that Theorem 4 is false for p=2n+1 and n = 5k+3m — 3.
| |
Remark 2. For integers k > 1, m > 0 and n = 5k + 3m — 3 let H be an orgraph with
9n + 1 vertices whose vertex set V(H) can be partitioned into sets 4, B, C, D and {z,y}
such that

1.|A|=|B|=4k+2m—3, |D|=2k+m~1, |C|=m,

2. The suborgraphs (A) and (B) are regular tournaments and the suborgraphs (C) and
(D) either are regular tournaments or almost regular tournaments,

3. The orgraph H also satisfies the following conditions {z} = AUC, BUC — {y},
A— DUC, DUC — B, {y} = {z}UAUD, BUD — {z} and B — A. Moreover if z€ D
then od(z,C) 2 || C | /2] and id(2,C) = [| C | /2] and if z € C then od(z,D) 2 [| D | /2]
and id(z, D) > (| D | /2] .

It is not difficult to see that the semi-degrees of each vertex of H are at least n—k and in
(C) all (z,y)-paths have length at least 4, i.e. for p=2n+1 and n = 5k + 3m — 3 Theorem
4 is not true.
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Nor.ethatforwinmmp=2nandn=5k+3m—5wecanmnstrmdsqanﬂrmph

on2nwtiouwithm.in1mumsemi-deymsatleaatn-—kforwhidlmeomdlsfﬂlﬁe—

UﬁngnproofmalogomtomatofThmimmmwt.hefollowins:

Theorem 5. Let eitherp=2n andn>3k+2m—2o0rp=2n+1 andn>3k+2m—1.If
C c V(G) and | C |=m, then for each two distinct vertices z,y € V(G) —C in suborgraph

© there is an (z.y)-path of length ot most 4.

Ramn.rl:3.Foranyintegenp=2nandn=3k+2m—3(p=2n+1 and n =3k +2m—2,
respectively) there is an orgraph on p vertices with minimum semi-degrees at least n— k for
which Theorem 5 is false if m +2k > 9 (m+ 2k 2 8, respectively).
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