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Abstract

This paper presents efficient pruning algorithms for computing the length ¢ x¥
DFT for & subset of output points based on transform decomposition method and in

new results in computation of FFT.

1. Introduction

The discrete Fourier transform (DFT) finds applications in almost every field of science
and engineering. A major reason for its widespread use is the existence of efficient algo-
rithms for its computation. Family of these algorithms are known as fast Fourier transforms
(FFT). Cooley and Tukey [1] in 1965 suggested a new method for computation of the DFT
which required only O(N log N) operations in opposite of direct form computation O(N?).
Later become more efficent ways to compute DFT, such as prime factor algorithm(PFA) [2],
Winograd Fourier transform algorithm (WFTA) [2], split-radix FFT and modified split-radix
FFT algorithms [4].[5]. There are many applications where only subset of output of FFT are
needed. This problem can be solved by using Goertzel's algorithm [6]. [2] which for compu-
tation one output point requires (2N — 1) real multiplications and (4/V — 1) real additions
for input vector in N-length. Another algorithm, which gives a slight improvement over
Goertzels algorithm, was proposed by Boncelet [7].Boncelet’s method requires O(%) real
operations per output paint. More efficient methods to compute partial spectrum are called
pruned FFT algorithms (some authors called the "z0om-FFT" ). The pruning method was
first proposed by Markel [9] in 1971. Later this method was improved by Skinner [10] (See
Figure 1), Nagai [11]. Efficient method for solving this problem is proposed by Sorensen,
Burrus and Jones [11] which is based on fast Fourier transform Decomposition (FFT TD).
The main advantage of TD -method is in her universality, which allows to use the best of
known FFT algorithms. Algorithm proposed in this paper uses modified split-radix FFT
algorithms [4](5][11],[12]

2. Description of the algorithm

Let z = (zo, Z1....,Zn-1) be an original column-vector with complex com i
i ponents (N is the
power of two.N' = 2™). DFT of this vector is determined by the following formula
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N-1

Xlk]rlﬁzlnlwk*- k=0,1,..., N1, (1)

where Wy = exp(~jf}) = cos B —jsin %, j=v=1.
Below coefficient. 7% Was omitted.
Let we only in P part of output spectrum P = 2'. Introduce following notations

a=4%
n= Qn + Q'nq
m= ] LP-1. @
g = 0.1 Q-1
Now we can represent (1) as follows
Q-1 p=1
X[k = ): Y z[mQ + ng Wit ®)
wg=0n;=0
Rewrite (2) as follows
Q-1 P2
X[k = ZIZ zmQ +ng W <+ )W et (4)
ny=0 n;=0

Here <> denotes reduction modulo P and k£ = 0.1,... N — 1. Splitting (4 ) into two
equations

Q-1
X[k] = 3= Xnl< k >p]Wi (5)
niy=0
and pLy Po1
Xlil = 3 2lm@ +malWp = 3 amglm )W, ©)
nmy=0 ny=0

where j =0.1....,P—1 and
Zmy[m1] = Z{m@Q + ng]. ()

The last part of (6) can be computed with any FFT program. Data which are interests
us depend on nz. DFT has to be computed for all values of n; and Q P-length FFTs.
(Scheme of this method is demonstrated in Figure 2) Results of FFTs are restructured
using ( 5), which can be evaluated by using (@ — 1)- complex additions and Q-complex
multiplications. We need to do PQ -complex multiplications (one complex multiplication
requires 4 real multiplication and 2 real additions) and P(Q — 1) -complex additions (with
9 real additions) Ry representing (5) as follows

Q-1
X[K] = Xol< k>p)+ 3 Xual< k >p]Wink ®)
ny=1

we can save P- complex multiplications over PQ=N. Resuming these results can find the
total complexity of pruned FFT algorithm with TD

Cp(TD) =Q x CE(FFT) + 4(N - P) (9)
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CX(TD) = Q x CE(FFT)+4(N — P) (10)

In [10] other technique similar to Goertzel's algorithm for recei
arithmetic complexity of (9) and (10) are described. Derivation of
described in this paper, but complexity of algorithm is

C}(G) = @ x C5(FFT) +4P(Q —1) + 4P

ving lower bounds in
that method is not

(1)

Ci(G) = Q x CE(FFT) +2P(Q — 1) +4P (12)
t FFT algorithm for computing
and 3 real additions
presented below

This universal approach allows us to use most efficien
P-point DFT. For FFT algorithm scheme with 3 real multiplications !
per complex multiplication are chosen(11]. Complexity of this algorithm is

ci =aN|og,,N—§N— 12(—1)os ¥ 4 4 (13)

= Nlog,N—%N—d{—l}""l” +4 (14)
By substituting (13) and ( 14) in (11) and (12) respectively we finally get
C4(TD) = 3Nlogy P~ %N —4(P - Q) — 12(~1)Pe” (15)
C;(TD}=Nlog,P—%N—4(P—Q)—4Q(—l)“'“P (16)
and when method similar to Goertzel’s algorithm is used
CH(G) =3Nlog, P — %N —4Q(3Q(—1)e=N — 1) (17)
C}E(G’}=NlogaP—gN+2[P+éQ)~4Q(~1]“ﬁ” (18)

When complex multiplication requires 4 real multiplications and 2 real additions can be
applied algorithm [4]. :

8 16
0;=§N10&N—FN—§{—I)'°“”+2 (19)
10 76
%= Nloga N — =N —2log, N — %N{—l}""” - ;2:2;{—1)""""‘r +6 (20
Given these results we finally find

CH(TD) = 3NlogP - 2N — 2q(-1)w” _ 2(2P — Q) (@)

Cp(TD) = %Nhﬂ‘a P+¥~+2_{3Q—2P}—[210& P+§P(_1)h¢al’_ %{—I)WP]Q (22)
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3. DFT of composite sequence lengths
In [13] the idea of split-radix algorithm has been extended to the length g x 2™ DFTs.
Logarithmic complexity of algorithm for g x 2™ length DFT's doesn't exist. It is easy to see
what arithmetic complexity of algorithm [13] is described by following recurrence relations.
For complex multiplication with 4 real multiplications and 2 real additions
Ch =Chp+2CH,+4N—4q, C{=CR,+2C5, +2N -1 (23)
For complex multiplication with 3 real multiplications and 3 real additions
Cli=Cln+1Ch+3N -8, Ci=Cip+2Ch,+3N—-8  (24)
Using these initial conditions
Cf, =2C} +49. Cf,=4C; +16g as)
ChL=3C}, Cl=4CF
Finally we get
for complex multiplication with 4 real multiplications and 2 real additions
Gi = Mg (2) ~ ¥ (8- 165) - 118 12
Cf = §Nloga () = N (% ~105) + (-1 +6¢
for complex multiplication with 3 real multiplications and 3 real additions
Cii = 3Nlog (§) - N (3-4c}) + 44
Cfy = Nogs (§) =N (3- 1) +44

Now by using (9) and (10) we can get
for complex multiplication with 4 real multiplications and 2 real additions

CH(TD) = §Nlog, (£) - N (¥ - 1c}) - %2Q(-1)"(%) +2Q¢ + 4(N - P)
C(TD) = $Nlog, (£) — N (2 - 1c5) + 2Q (-1)(%) +6Qq + 4(N - P)
for complex multiplication with 3 real multiplications and 3 real additions
CH(TD) = 3Nlog, (£) — N (3—1C}) +4(N — P +Qq)
CH(T'D) = Nilog, (£) = N (3— 1C}) +4(N — P+ Qq)

(26)

(27)

(28)

(29)

4. Conclusion

The problem of computation of subset of output points can be performed by three basic
methods.
1. One can ignore the fact that subset of output points are need and compute all points.
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This method often requires more operations that other methods, but it is easy 0 ‘IFPIMt"
2. Can compute some points by using Goertzel's algorithm (or Boncelet), but this method
efficient only for very small subset of output points.

3. Transform decomposition method

So we get
@ Described methods are efficient if needed points count less than 50 percent of spectrum.
. Emﬂmdpdnmpntmtmnmpuabkszaﬁmofpmtedmethodsmnﬁﬂjmﬂ
mdifmbaetgutorhban%pmtofspectmmitismomaﬁcimtwmeﬁdem
FFT algorithm.
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Figure 1.Modified Skinner's pruned 16-point FFT algorithm for 4-output points.
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Figure 2. Transform decomposition scheme.
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