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Abstract

We present lower and upper bounds for the number of irreducible linearls@ cover-
ings of subsets in a finite field with characteristic greater than 2. In case of finite field
with characteristic equal to 2, these bounds are obtained by Alexanian.

1. Introduction

Throughout this paper F, stands for a finite field with g elements. and F for an n-
dimensional linear space over Fj. If L is a linear subspace in F7', then the set & + L =
{a+2|z € L}. & € F]' is a coset (or translate) of the subspace L and dim (& + L) coincides
with dim L. An equivalent definition: a subset N C F' is a coset if whenever .28, ..., ol

are in N, so is any affine combination of them, i.e., 5o is Eixiii for any Ay Az. .-+ Am in Fy
=

such that EIA, = 1. It can be readily verified that any k-dimensional coset in F}' can be

represented as a set of solutions of a certain system of linear equations over Fyof rankn—k

and vice versa. The number of k-dimensional linear subspaces in F’ equals to

[n] (g =1)(gt =11) - (g 1)
k], @ -1@"-1)---(g-1)

which is called Gauss coefficient.

Let NV be a subset in F7.
Definition 1. A coset H in Fy is called mazimal coset inN, if H C Nand for any cosel
H2H, H¢ZN.
De.ﬂn’.i“ﬁon 2. A set of cosets {Hy, Ha,...,Hn} in Fj' forms o linearised covering of N if
N=H1H.. The length (or complexity) of the covering is equal to the number of cosels, i.e.
m.

Definition 3. A linearised covering D = {Hy, Hy, ..., Hn} of N is called irreducible lin-
earised covering if H; is a mazimal coset inN (i = 1,...,m) and for any D' C D, D’ does
not form a covering for N.
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Definition 4. We say that a set of cosets A = {Hy, Hy, ..., Hy} in FT' forms an enti-chain
ifi#£j=H, ¢ H; and H;  H;.

It is shown in [1, pp. 13-15] that for the maximum length of anti-chain A in F7 the
following inequality holds:
aa (n+1)7
max |A| < &g 1 (1)

Let t(N )stands for the number of all irreducible linearised coverings for N. We denote by

t(n) = F;n’g:: t(N)

The purpase of this paper is to obtain lower and upper bounds for £(n). For finite fields of
char=2 this is done in [2].

2. Main Result

Theorem 1.
(3-8 < () < grisgPaee)
where [0] is the integer part of a, m&d"ljﬂeu =1,

This theorem is a result of the following set of affirmations.
Let us consider the following equation over the field F2":

Z1Z3 + ... + Tan-1Za, = b. (2)

where b € F,, and b # 0.
We denote by Ny the set of solutions of 2. Np can be represented as a union of solutions of
some systems of linear equations over F}"as stated in the below lemma.

Lemma 1. The union of solutions of systems

2 =0

> ez =b (b#0)
i=1

Jor all &= (..., an) € F* and & # (0,...,0) gives No.

Proof. Suppose = (fi,...,Bm) is a solution of (2), so we have 8152 +. . .+Ban—152n = b.
Since we have b # 0, then (83,8 ..., B2) # (0,...,0). It is obvious that § is a solution of 3
for (o, ..., oy) = (B2, Ps - - Pan). Now let us proof the opposite: suppose 8 = (f,...,fm)
is a solution of system (3) for some & = (a,...,0,) € F7, @ # (0, ..., 0). Putting o; = B,
and 3,1 = Ba—1in the last equation of (3) we make sure that 8 = (B, ..., 5s.) satisfies
equation (2). So the lemma is proved. W

Hereafter by{a',&@,...,@" '} we denote the set of all vectors & € Fy, & # (0,...,0),

and for every &7 = (u{,....c-,’,).j= 1,...,q4" — 1 we denote by N(&’) the set of solutions



Ei
i

,...,03). It is clear that for every & the equations in

ank of (3) equals n + 1. Consequen!.ly, every
w:h;'f- {n+(1))= n — 1. It is also obvious that

-1
come to a conclusion, that No = J_L_J1 N(&’) and

of system (3) for (@1y10n) = (
system (3) are linearly independent,
N(&)represents a coset with dimensio

N (&) N N (&%) = whenever i # j. So, we
ol =[] W@ = i) = =

Lemma 2. UCiaamumeg,thendimC£n—1.
Proof.  Let us denote by B the linear subspace of the vectors = (&1, .., Z2a)such
that zgy = 0, i = 1,...,m. Fbrevezyvecmr&’=(a{,...,a,{).j=l ----- q" -1 we
construct a vector by € FZ", such that b = (O.a’.n,cd.....ﬂ.a{,). I:,et us denote by
B; = B +b;. Obeerve that N (&) C B; and N (&) = No N B;j. Conslder.nooset.car
linear subspace F such that C € No. Let dimC = dim F = k. One can easily check that

=1 -1

C'-——rU [CHN(&-’I))='"U (CnBy) (since CNN (&) = CNBy). On the other hand every
gt iuncosatoflinmmhapsceBnF.indeed.ifwehsvezECnB,-. It

follows that C = z+ F and B,=x+BtherefoanBj=z+(FnB}. So, we can state
that !CHB_,I=|Fr'IB|=q-"furany_f=l.....q“—1,suc.h that €N B; # , and the number

of non-empty CN B; is ¢*~*. Without loss of generality. let us suppose that these non-empty
sets are CN By, ...,CNBy-. Let also }_‘,ln:*-zm_, = b indicates the last equation of system
=

(3) related with coset B;. Now consider the following system of linear equations:
zy =0 i=1,..n
Zﬂ':#zi-l =0 j= PR
i=1

It is clear that the set of solutions D of (4) is a linear subspace in B. Let us show that

|cnB;| < |D|.1f CNBy= there is nothing to show. Suppose CnNB; #0. As we know
C NN (&) = Cn By, and since the odd coordinates of vector —b; are zeros, the equality

éa{zﬁ_. = b does not change for the coset —b; + (C N B)). and its vectors satisfy that
equation. Easy to see that —b; +(CN B;) =d+(BNF) for some d € B. Therefore, for all
themtomofaubapmﬂﬂf'themgcﬁza_l is constant, and since 0 € BN F we come

wawnduﬂmmnforanmmdsnr.ga{ml = 0. Consequently, BNF C D.

non-empty C N B;

)

So, dim D > dim (BN F) = p. Any equation of (4) in the form ﬁcr,'::g,,_l = 0 can not be
ﬁnearl)fmpmsmted with the equations zz; = 0, therefore, besides the first n equations, there
also exist at least k — p+ 1 linearly independent equations in (4). Hence, the rank of (4) is
_nnt.lemtha.un+k—p+1.Sowagetdi.mDSh—{n+k—p+1):n—k+p—1. On
the other hand dim D > p, therefore k < n— 1. This was to be proved. B
: =1

Lemma 3. Let \; € Fy (j = 1,...,4" — 1) such that ':):] A =1, a,...,a" are all
Mn—ml'un—dimauimdﬂmGMA151+4\3&’+...+A'-_1&"" #(0,0,...,0), then

AN (&) + 2N (8) +... 4 AN (87) = N (M@ + 0@ +... + Apa&) (5)
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Proof. Let = (ﬂ{,,ﬁ.) be a solution of (3) corresponding the vector &, ie.
3 € N (&). So, forall j =1,...,q" — 1 take place

B=d

B =, ©)

Eﬂi’g‘_; =b

i=1
Let us multiply left and right sides of all the equations in 6 with A;, and sum the first

equations of systems (6) over all the values of j = 1,...,¢" — 1 . then sum the seconds,
thirds. and so on. We get

( =1
ril ‘\)ﬂli ‘\Jaj

) :Y-.l 2 i = Z Ao, (7)
Zﬂgi—I (2 4‘1""’) = E—I Ajb=b
=1

.3

As we have that (';g'z,a{,...,‘;gla,ag;) # (0.0,....0). so (7) is a system of type (3)

= = =
corresponding the vector & = (E{ ,\‘,-a{ ..... ,Z_:' Jt,a,,) and vector M3 + ...+ Age g 37

salisfies it and the lemma is proved.

=
SuppmngNu is a coset of linear subspace F with dimension n — 1. As we already

know C = U (C N N (&%), where every non-empty C' N N (&) = C N B; is a coset of
H = BnF. Let dim (C N N (&')) = p, this means that there are exactly ¢"~'~” non-
empty cosets €N N(&). Assume these cosets are C N N (&'),....,CNN (&), ie.
C = U (CnN(a-’)} Let pg : F2* — Fh/g is a canonical homomorphism. It is

clear, I.hntaanmult of this homomorphism, the images of vectors of C form (n — 1 —p)-
dimensional coset. Let L = {Bj, ..., Bp-1-»} be the coset in ‘g / 'B, corresponding the coset
C. Obviously, BN Ng=,s0 B ¢ L. Let {B, ..., Ba—p} be a basis in L, i.e. every element in

L can be represented as A B; +...+A,._,B..,.wm':;::l',\.= 1, NEF,i=1,....,n—p.
Let D be the subspace of solutions of the following system:

=0

73 =0 ®
Y oz =0, j=1,...,¢""'"
=1
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—l)inhelinaarxpsoeoflinwfomsover variables

{::,.z:....,za,...l},thenbylemm2wehmthatﬁmct.im {ga‘.‘m—x}f’=1---uq“""
formamtinLF(ﬂn—l)andOisnotintlmtcmet. Thismennethntthermkofsystm
of equations 5 ofzu1 =0 §=1,:::¢"" is n—p. Therefors, the rank of (8) equals to
h—p.mddi:D=p. OnthuotherhmdmhangDanddlmH _=p.uowegetH =D,
thismmthatthewset[.idmﬁﬁmﬂuniqueb’. Ineve'll'yeoaetB,,J =1,...,n—plet us
choose a coset, of H, which elements satisfy the equation E‘a{zm_l =b. Let C1,C3,---,Cayp

h » .
be these cosets. Obviously, all cosets in C/(of the form CNN (&)) are linear combinations

of cosets C1.Ca, .+ - Cu—p-
Summarizing all the above said, we
dimensional, and every maximal coset in

Observe, that H C D. Suppose LF (2n

can state that maximal coset in Np is (n—1)-
Np is constructed in the following way:

Bn-1-»} in space F?/B (B¢ L),

1. Choose an (n—1—p)-dimensional coset L = {B...--
.., Zgn)such that zz = 0.

where B is the linear subspace of the vectors Z = (z1,-
i=1,...,nand0<p<n-—1

2. If {B1,..., Bn—p} is & basis in L, then for all i = 1,...,n — p we choose cosets Cj in
N N Biof p-dimensional linear subspace D which is uniquely identified by L.

- -
3. The union C = fU ’C,is (n — 1)-dimensional coset in Np, where C1.Cavues Copr-1-»
=1
n—p :
majlthecoutainformhc|+...+a\.,_,c....,.IEIA;=1.;\,EF,. 2 n-—p.

From the construction follows that if we have a coset C € Np such that dimC = k <
n — 1, then it is embedded in some n — l-dimensional coset in Np. Indeed, it is enough
bommtionthatany(k-p}-djmensinnalmsetLgFF/B,Bﬁ Lcan be enlarged to (n —
1 — p)-dimensional coset L' C B /B, such that B ¢ L’. So we come to a conclusion
that every maximal coset in Np is (n — 1)-dimensional. Thus the abbreviated linearised
covering of Ny consists only from (n — 1)-dimensional cosets in Np. Let us count the number
of various maximal cosets in No. In first step of the construction we can choose L in

[pil (¢°*! — 1) different ways. Every coset C; in No N B; in step 2 can be chosen in
q

g"~1~" ways, and all the cosets Cj, ...,Cnp in (¢"~'?)""" ways. We finally get that the

number of all (n — 1)-dimensional cosets in Np is equal to

= n 1 n=p)(n 1
5 pHL(qn )

Now let us count the number of irreducible linearised coverings for the subset Np.

Lemma 4.
t(No) 2 gmme™, )

MNQQF;"'iaﬁlesdofmhlﬁmsofequaﬁon{!}{b;ﬁﬂ).
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Proof. Obser've.thndim(f‘:“/g)=n.andf?-/3isiaomorphicmf;'. Let ¢ :
F-?"/B — F}' implements that isomorphism and let ¢ (B) = B. There exists a system of
linear equations over Fy', with rank n, which solution gives the vector 5. Supposé the system
is the following:
Li{z)=0
lgf-z} =0 (10)
- L(z) =0
Let. us denote by H; the coset of solutions of the equation [;(Z) + 1 = 0. Obviously, vector
# does not contained in H; forany i = 1...., n. On the o_ther hand, for every i =1,...,n,
there exists a vector & , such that &' € H, and &' ¢ le Hj. otherwise we would have

17F1
that L,(z) + 1 can be linearly represented by functions §i(Z) + 1,...,4-1(Z) + 1.l (Z) +
ey L, (z) + 1which contradicts the fact that the rank of 10 equals n. For a specific i €
s n} let us choose asl{described in step 1 of constructing (n — 1)-dimensional cosets in
Na) the coset ™! (H;). So we have dim L = n—1. This means that the dimension of subspace
Dis0. Let {Bi,.... B,} be the basis in L. and B, = ¢! (&*). For constructing the (n — 1)-
dimensional coset. we need to choose a single element in each N (&') € By, i = 1..... n.
Let us fix a vector ¥ € N (&'). In every coset N (&'). i = 2,....n the number of choices
of a single vector equals to ¢"~'. So the number of cosets C; containing vector % € N (&')
equals (¢"~')"™" = g1’ As every C; covers its specific vector ¥ € N (&), it cannot be
absorbed by other Cy. Thus. for a fixed value i € {1..... n}, there are ™17~ different
coverings. As every coset H; has at least one vector. that is not being covered by other
cosets H;, j = 1,....n, j # i, it is guaranteed that for each i € {1,...,n}, we will have a
coset By, which is not contained in L for other i-s. So we get at least (q‘""”“'")“ different
irreducible coverings, and the lemma is proved. B
Now we can prove the main theorem.

Proof (Main Theorem). Substituting n with % in (9) in case of n = Ofiod2) and with
=l if n = lnod2) we get the lower bound for ¢ (n)

t (n) g rﬂ-')’fﬂfrﬂ"',
Obviously, maximal cosets in a linearised covering for any subset Nform an anti-chain. Thus

2
using (1) we have that the number of maximal oosetsisnotgeatert.hane‘”q{n-'-l) /4,
Observe that the maximum number of cosets in any irreducible linearised covering does
not exceed ¢", so we can state that

tn) < g} ( e"’q": R ) .

where(’:)iathubinomialoufﬁclenzc;.i‘imﬂyweget

t(n) < g" ( g™+ g ) <q (e‘-”q(""' "’h)r = g ),
q-
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where lim &, =0. The theorem is proved.
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