On the Number of Irreducible Linearised Coverings for Subsets in Finite Fields

Hovhannes K. Nurijanyan

Department of Applied Mathematics and Informatics, Yerevan State University hovikn@gmail.com

Abstract

We present lower and upper bounds for the number of irreducible linearised coverings of subsets in a finite field with characteristic greater than 2. In case of finite field with characteristic equal to 2, these bounds are obtained by Alexanian.

1. Introduction

Throughout this paper F_q stands for a finite field with q elements, and F_q^n for an n-dimensional linear space over F_q . If L is a linear subspace in F_q^n , then the set $\tilde{\alpha}+L\equiv\{\tilde{\alpha}+\tilde{x}|\tilde{x}\in L\}$. $\tilde{\alpha}\in F_q^n$ is a coset (or translate) of the subspace L and $\dim(\tilde{\alpha}+L)$ coincides with $\dim L$. An equivalent definition: a subset $N\subseteq F_q^n$ is a coset if whenever $\tilde{x}^1,\tilde{x}^2,\ldots,\tilde{x}^m$ are in N, so is any affine combination of them, i.e., so is $\sum_{i=1}^m \lambda_i \tilde{x}^i$ for any $\lambda_1,\lambda_2,\ldots,\lambda_m$ in F_q such that $\sum_{i=1}^m \lambda_i = 1$. It can be readily verified that any k-dimensional coset in F_q^n can be represented as a set of solutions of a certain system of linear equations over F_q of rank n-k and vice versa. The number of k-dimensional linear subspaces in F_q^n equals to

$$\left[\begin{array}{c} n \\ k \end{array}\right]_{q} = \frac{(q^{n}-1)(q^{n-1}-1)\cdots(q^{n-k+1}-1)}{(q^{k}-1)(q^{k-1}-1)\cdots(q-1)},$$

which is called Gauss coefficient.

Let N be a subset in F_a^n .

Definition 1. A coset H in F_q^n is called maximal coset inN, if $H \subseteq N$ and for any coset $H' \supseteq H$, $H' \not\subset N$.

Definition 2. A set of cosets $\{H_1, H_2, \ldots, H_m\}$ in F_q^n forms a linearised covering of N if $N = \bigcup_{i=1}^m H_i$. The length (or complexity) of the covering is equal to the number of cosets, i.e. m.

Definition 3. A linearised covering $D = \{H_1, H_2, \ldots, H_m\}$ of N is called irreducible linearised covering if H_i is a maximal coset in $N(i = 1, \ldots, m)$ and for any $D' \subset D$, D' does not form a covering for N.

Definition 4. We say that a set of cosets $A = \{H_1, H_2, ..., H_m\}$ in F_q^n forms an anti-chain if $i \neq j \Rightarrow H_i \not\subset H_j$ and $H_j \not\subset H_i$.

It is shown in [1, pp. 13-15] that for the maximum length of anti-chain A in \mathbb{F}_q^n the following inequality holds:

 $\max |A| \le e^{4/3} q^{(n+1)^2/4}$ (1)

Let t(N) stands for the number of all irreducible linearised coverings for N. We denote by

$$t(n) = \max_{N \subseteq F_n^n} t(N)$$

The purpose of this paper is to obtain lower and upper bounds for t(n). For finite fields of char=2 this is done in [2].

2. Main Result.

Theorem 1.

$$q^{\left(\left\lceil\frac{n}{2}\right\rceil-1\right)^2\left\lceil\frac{n}{2}\right\rceil q^{\left\lceil\frac{n}{2}\right\rceil-1}} \leq t\left(n\right) \leq q^{q^n\frac{(n+1)^2}{4}(1+\varepsilon_n)},$$

where [0] is the integer part of a, and $\lim_{n\to\infty} \varepsilon_n = 0$.

This theorem is a result of the following set of affirmations. Let us consider the following equation over the field F_a^{2n} :

$$x_1x_2 + \ldots + x_{2n-1}x_{2n} = b.$$
 (2)

where $b \in F_a$, and $b \neq 0$.

We denote by N_0 the set of solutions of 2. N_0 can be represented as a union of solutions of some systems of linear equations over F_q^{an} as stated in the below lemma.

Lemma 1. The union of solutions of systems

$$\begin{cases} x_2 = \alpha_1 \\ \dots \\ x_{2n} = \alpha_n \\ \sum_{i=1}^{n} \alpha_i x_{2i-1} = b \ (b \neq 0) \end{cases}$$
 (3)

for all $\tilde{\alpha} = (\alpha_1, \ldots, \alpha_n) \in F_q^n$ and $\tilde{\alpha} \neq (0, \ldots, 0)$ gives N_0 .

Proof. Suppose $\tilde{\beta} = (\beta_1, \dots, \beta_{2n})$ is a solution of (2), so we have $\beta_1\beta_2 + \dots + \beta_{2n-1}\beta_{2n} = b$. Since we have $b \neq 0$, then $(\beta_2, \beta_4, \dots, \beta_{2n}) \neq (0, \dots, 0)$. It is obvious that $\tilde{\beta}$ is a solution of 3 for $(\alpha_1, \dots, \alpha_n) = (\beta_2, \beta_4, \dots, \beta_{2n})$. Now let us proof the opposite: suppose $\tilde{\beta} = (\beta_1, \dots, \beta_{2n})$ is a solution of system (3) for some $\tilde{\alpha} = (\alpha_1, \dots, \alpha_n) \in F_q^n$, $\tilde{\alpha} \neq (0, \dots, 0)$. Putting $\alpha_i = \beta_{2i}$, and $x_{2i-1} = \beta_{2i-1}$ in the last equation of (3) we make sure that $\tilde{\beta} = (\beta_1, \dots, \beta_{2n})$ satisfies equation (2). So the lemma is proved.

Hereafter by $\{\tilde{\alpha}^1, \tilde{\alpha}^2, \dots, \tilde{\alpha}^{q^n-1}\}$ we denote the set of all vectors $\tilde{\alpha} \in F_q^n$, $\tilde{\alpha} \neq (0, \dots, 0)$, and for every $\tilde{\alpha}^j = (\alpha_1^j, \dots, \alpha_n^j)$, $j = 1, \dots, q^n - 1$ we denote by $N(\tilde{\alpha}^j)$ the set of solutions

of system (3) for $(\alpha_1, \ldots, \alpha_n) = (\alpha_1^j, \ldots, \alpha_n^j)$. It is clear that for every $\tilde{\alpha}^j$ the equations in system (3) are linearly independent, so the rank of (3) equals n+1. Consequently, every $N(\tilde{\alpha}^j)$ represents a coset with dimension 2n-(n+1)=n-1. It is also obvious that $N(\tilde{\alpha}^j) \cap N(\tilde{\alpha}^j) = 0$ whenever $i \neq j$. So, we come to a conclusion, that $N_0 = \bigcup_{j=1}^{q^n-1} N(\tilde{\alpha}^j)$ and

 $|N_0| = \left| \bigcup_{j=1}^{q^n-1} N(\tilde{\alpha}^j) \right| = q^{n-1}(q^n-1) = q^{2n-1} - q^{n-1}.$ Lemma 2. If C is a coset in N_0 , then dim $C \le n-1$.

Proof. Let us denote by B the linear subspace of the vectors $\tilde{x}=(x_1,\ldots,x_{2n})$ such that $x_{2i}=0,\ i=1,\ldots,n$. For every vector $\tilde{\alpha}^j=(\alpha_1^j,\ldots,\alpha_n^j),\ j=1,\ldots,q^n-1$ we construct a vector $b_j\in F_q^{2n}$, such that $b_j=(0,\alpha_1^j,0,\alpha_2^j,\ldots,0,\alpha_n^j)$. Let us denote by $B_j\equiv B+b_j$. Observe that $N(\tilde{\alpha}^j)\subset B_j$ and $N(\tilde{\alpha}^j)=N_0\cap B_j$. Consider a coset C of linear subspace F such that $C\subseteq N_0$. Let $\dim C=\dim F=k$. One can easily check that $C=\bigcup_{j=1}^{q^{n-1}}(C\cap N(\tilde{\alpha}^j))=\bigcup_{j=1}^{q^{n-1}}(C\cap B_j)$ (since $C\cap N(\tilde{\alpha}^j)=C\cap B_j$). On the other hand every non-empty $C\cap B_j$ is a coset of linear subspace $B\cap F$. Indeed, if we have $z\in C\cap B_j$. It follows that C=z+F and $B_j=z+B$ therefore $C\cap B_j=z+(F\cap B)$. So, we can state that $|C\cap B_j|=|F\cap B|=q^p$ for any $j=1,\ldots,q^n-1$, such that $C\cap B_j\neq \infty$, and the number of non-empty $C\cap B_j$ is q^{k-p} . Without loss of generality, let us suppose that these non-empty sets are $C\cap B_1,\ldots,C\cap B_{q^{k-p}}$. Let also $\sum_{j=1}^n\alpha_j^jx_{2j-1}=b$ indicates the last equation of system (3) related with coset B_j . Now consider the following system of linear equations:

$$\begin{cases} x_{2i} = 0 & i = 1, \dots, n \\ \sum_{i=1}^{n} \alpha_i^j x_{2i-1} = 0 & j = 1, \dots, q^{k-p} \end{cases}$$
(4)

It is clear that the set of solutions D of (4) is a linear subspace in B. Let us show that $|C \cap B_j| \leq |D|$. If $C \cap B_j =$ there is nothing to show. Suppose $C \cap B_j \neq \emptyset$. As we know $C \cap N(\bar{\alpha}^j) = C \cap B_j$, and since the odd coordinates of vector $-b_j$ are zeros, the equality $\sum_{i=1}^{n} \alpha_i^i x_{2i-1} = b$ does not change for the coset $-b_j + (C \cap B_j)$, and its vectors satisfy that equation. Easy to see that $-b_j + (C \cap B_j) = d + (B \cap F)$ for some $d \in B$. Therefore, for all the vectors of subspace $B \cap F$ the sum $\sum_{i=1}^{n} \alpha_i^j x_{2i-1}$ is constant, and since $0 \in B \cap F$ we come to a conclusion that for all vectors of $B \cap F$, $\sum_{i=1}^{n} \alpha_i^j x_{2i-1} = 0$. Consequently, $B \cap F \subseteq D$. So, dim $D \ge \dim(B \cap F) = p$. Any equation of (4) in the form $\sum_{i=1}^{n} \alpha_i^j x_{2i-1} = 0$ can not be linearly represented with the equations $x_{2i} = 0$, therefore, besides the first n equations, there also exist at least k - p + 1 linearly independent equations in (4). Hence, the rank of (4) is not less than n + k - p + 1. So we get dim $D \le 2n - (n + k - p + 1) = n - k + p - 1$. On the other hand dim $D \ge p$, therefore $k \le n - 1$. This was to be proved.

Lemma 3. Let $\lambda_j \in F_q$ $(j = 1, ..., q^n - 1)$ such that $\sum_{j=1}^{q^n-1} \lambda_j = 1, \tilde{\alpha}^1, ..., \tilde{\alpha}^{q^n-1}$ are all non-zero n-dimensional vectors and $\lambda_1 \tilde{\alpha}^1 + \lambda_2 \tilde{\alpha}^2 + ... + \lambda_{q^n-1} \tilde{\alpha}^{q^n-1} \neq (0, 0, ..., 0)$, then $\lambda_1 N(\tilde{\alpha}^1) + \lambda_2 N(\tilde{\alpha}^2) + ... + \lambda_{q^n-1} N(\tilde{\alpha}^{q^n-1}) = N(\lambda_1 \tilde{\alpha}^1 + \lambda_2 \tilde{\alpha}^2 + ... + \lambda_{q^n-1} \tilde{\alpha}^{q^n-1})$ (5)

Proof. Let $\tilde{\beta}^j = (\beta^j_1, \dots, \beta^j_{2n})$ be a solution of (3) corresponding the vector $\tilde{\alpha}^j$, i.e. $\tilde{\beta}^j \in N(\tilde{\alpha}^j)$. So, for all $j = 1, \dots, q^n - 1$ take place

$$\begin{cases}
\beta_2^j = \alpha_1^j \\
\dots \\
\beta_{2n}^j = \alpha_n^j \\
\sum_{i=1}^n \alpha_i^j \beta_{2i-1}^j = b
\end{cases}$$
(6)

Let us multiply left and right sides of all the equations in 6 with λ_j , and sum the first equations of systems (6) over all the values of $j=1,\ldots,q^n-1$, then sum the seconds, thirds, and so on. We get

$$\begin{cases} \sum_{j=1}^{q^{n}-1} \lambda_{j} \beta_{2}^{j} = \sum_{j=1}^{q^{n}-1} \lambda_{j} \alpha_{1}^{j} \\ \cdots \\ \sum_{j=1}^{q^{n}-1} \lambda_{j} \beta_{2n}^{j} = \sum_{j=1}^{q^{n}-1} \lambda_{j} \alpha_{n}^{j} \\ \sum_{i=1}^{n} \beta_{2i-1}^{j} \left(\sum_{j=1}^{q^{n}-1} \lambda_{j} \alpha_{i}^{j} \right) = \sum_{j=1}^{q^{n}-1} \lambda_{j} b = b \end{cases}$$

$$(7)$$

As we have that $\begin{pmatrix} q^{n-1} \\ \sum_{j=1}^{q} \lambda_j \alpha_1^j \\ \dots \end{pmatrix}_{j=1}^{q^{n-1}} \lambda_j \alpha_n^j \neq (0,0,\dots,0)$, so (7) is a system of type (3) corresponding the vector $\tilde{\alpha} = \begin{pmatrix} q^{n-1} \\ \sum_{j=1}^{q} \lambda_j \alpha_1^j \\ \dots \end{pmatrix}_{j=1}^{q^{n-1}} \lambda_j \alpha_n^j$ and vector $\lambda_1 \tilde{\beta}^1 + \dots + \lambda_{q^n-1} \tilde{\beta}^{q^n-1}$ satisfies it and the lemma is proved.

Suppose $C\subseteq N_0$ is a coset of linear subspace F with dimension n-1. As we already know $C=\bigcup\limits_{j=1}^{q^{n-1}}(C\cap N\left(\bar{\alpha}^{j}\right))$, where every non-empty $C\cap N\left(\bar{\alpha}^{j}\right)=C\cap B_{j}$ is a coset of $H=B\cap F$. Let $\dim\left(C\cap N\left(\bar{\alpha}^{j}\right)\right)=p$, this means that there are exactly q^{n-1-p} non-empty cosets $C\cap N\left(\bar{\alpha}^{j}\right)$. Assume these cosets are $C\cap N\left(\bar{\alpha}^{1}\right),\ldots,C\cap N\left(\bar{\alpha}^{q^{n-1-p}}\right)$, i.e. $C=\bigcup\limits_{j=1}^{q^{n-1-p}}(C\cap N\left(\bar{\alpha}^{j}\right))$. Let $\varphi_{B}:F_{q}^{2n}\to F_{q}^{2n}/B$ is a canonical homomorphism. It is clear, that as a result of this homomorphism, the images of vectors of C form (n-1-p)-dimensional coset. Let $L=\{B_{1},\ldots,B_{q^{n-1-p}}\}$ be the coset in F_{q}^{2n}/B , corresponding the coset C. Obviously, $B\cap N_{0}=$, so $B\notin L$. Let $\{B_{1},\ldots,B_{n-p}\}$ be a basis in L, i.e. every element in L can be represented as $\lambda_{1}B_{1}+\ldots+\lambda_{n-p}B_{n-p}$, where $\sum\limits_{i=1}^{n-p}\lambda_{i}=1,\ \lambda_{i}\in F_{q},\ i=1,\ldots,n-p$. Let D be the subspace of solutions of the following system:

$$\begin{cases} x_2 = 0 \\ \dots \\ x_{2n} = 0 \\ \sum_{i=1}^n \alpha_i^j x_{2i-1} = 0, \quad j = 1, \dots, q^{n-1-p} \end{cases}$$
 (5)

Observe, that $H \subseteq D$. Suppose LF(2n-1) is the linear space of linear forms over variables $\{x_1, x_3, \ldots, x_{2n-1}\}$, then by lemma 2 we have that functions $\left\{\sum_{i=1}^n \alpha_i^j x_{2i-1}\right\} j=1,\ldots,q^{n-1-p}$ form a coset in LF(2n-1) and 0 is not in that coset. This means that the rank of system of equations $\sum_{i=1}^n \alpha_i^j x_{2i-1} = 0$ $j=1,\ldots,q^{n-1-p}$ is n-p. Therefore, the rank of (8) equals to 2n-p, and $\dim D = p$. On the other hand we have $H \subseteq D$ and $\dim H = p$, so we get H = D, this means that the coset L identifies H uniquely. In every coset B_j , $j=1,\ldots,n-p$ let us choose a coset of H, which elements satisfy the equation $\sum_{i=1}^n \alpha_i^j x_{2i-1} = b$. Let $C_1, C_2, \ldots, C_{n-p}$ be these cosets. Obviously, all cosets in C (of the form $C \cap N(\tilde{\alpha}^j)$) are linear combinations of cosets $C_1, C_2, \ldots, C_{n-p}$.

Summarizing all the above said, we can state that maximal coset in N_0 is (n-1)-

dimensional, and every maximal coset in N_0 is constructed in the following way:

1. Choose an (n-1-p)-dimensional coset $L=\{B_1,\ldots,B_{q^{n-1-p}}\}$ in space F_q^{2n}/B $(B\notin L)$, where B is the linear subspace of the vectors $\bar{x}=(x_1,\ldots,x_{2n})$ such that $x_{2i}=0$, $i=1,\ldots,n$ and $0\leq p\leq n-1$.

- If {B₁,..., B_{n-p}} is a basis in L, then for all i = 1,...,n-p we choose cosets C_i in N₀ ∩ B_iof p-dimensional linear subspace D which is uniquely identified by L.
- 3. The union $C=\bigcup_{j=1}^{q^{n-1-p}}C_j$ is (n-1)-dimensional coset in N_0 , where $C_1,C_2,\ldots,C_{q^{n-1-p}}$ are all the cosets in form $\lambda_1C_1+\ldots+\lambda_{n-p}C_{n-p}$. $\sum\limits_{i=1}^{n-p}\lambda_i=1,\;\lambda_i\in F_q,\;i=1,\ldots,n-p.$

From the construction follows that if we have a coset $C \subseteq N_0$ such that $\dim C = k < n-1$, then it is embedded in some n-1-dimensional coset in N_0 . Indeed, it is enough to mention that any (k-p)-dimensional coset $L \subseteq F_q^{2n}/B$, $B \notin L$ can be enlarged to (n-1-p)-dimensional coset $L' \subseteq F_q^{2n}/B$, such that $B \notin L'$. So we come to a conclusion that every maximal coset in N_0 is (n-1)-dimensional. Thus the abbreviated linearised covering of N_0 consists only from (n-1)-dimensional cosets in N_0 . Let us count the number of various maximal cosets in N_0 . In first step of the construction we can choose L in $\begin{bmatrix} n \\ p+1 \end{bmatrix}_q (q^{p+1}-1)$ different ways. Every coset C_i in $N_0 \cap B_i$ in step 2 can be chosen in q^{n-1-p} ways, and all the cosets C_1, \ldots, C_{n-p} in $(q^{n-1-p})^{n-p}$ ways. We finally get that the number of all (n-1)-dimensional cosets in N_0 is equal to

$$\sum_{p=0}^{n-1} {n \brack p+1}_q (q^{p+1}-1) q^{(n-p)(n-p-1)}.$$

Now let us count the number of irreducible linearised coverings for the subset N_0 .

Lemma 4.

$$t(N_0) \ge q^{(n-1)^2 n q^{n-1}},\tag{9}$$

where $N_0 \subseteq F_a^{2n}$ is the set of solutions of equation (2) $(b \neq 0)$.

Proof. Observe, that $\dim \left(F_q^{2n}/B\right) = n$, and F_q^{2n}/B is isomorphic to F_q^n . Let $\varphi: F_q^{2n}/B \to F_q^n$ implements that isomorphism and let $\varphi(B) = \tilde{\beta}$. There exists a system of linear equations over F_q^n , with rank n, which solution gives the vector $\tilde{\beta}$. Suppose the system is the following:

$$\begin{cases}
l_1(\tilde{x}) = 0 \\
l_2(\tilde{x}) = 0 \\
\dots \\
l_n(\tilde{x}) = 0
\end{cases}$$
(10)

Let us denote by H_i the coset of solutions of the equation $l_i(\tilde{x}) + 1 = 0$. Obviously, vector $\tilde{\beta}$ does not contained in H_i for any $i = 1, \dots, n$. On the other hand, for every $i = 1, \dots, n$, there exists a vector $\tilde{\alpha}^i$, such that $\tilde{\alpha}^i \in H_i$ and $\tilde{\alpha}^i \notin \bigcup_{\substack{j=1 \ j \neq i}}^n H_j$, otherwise we would have

that $l_i(\bar{x})+1$ can be linearly represented by functions $l_1(\bar{x})+1,\ldots,l_{i-1}(\bar{x})+1,l_{i+1}(\bar{x})+1,\ldots,l_n(\bar{x})+1$ which contradicts the fact that the rank of 10 equals n. For a specific $i\in\{1,\ldots,n\}$ let us choose as L (described in step 1 of constructing (n-1)-dimensional cosets in N_0) the coset $\varphi^{-1}(H_i)$. So we have dim L=n-1. This means that the dimension of subspace D is 0. Let $\{B_1,\ldots,B_n\}$ be the basis in L and $B_1=\varphi^{-1}(\bar{\alpha}^i)$. For constructing the (n-1)-dimensional coset, we need to choose a single element in each $N(\bar{\alpha}^i)\subset B_i,\ i=1,\ldots,n$. Let us fix a vector $\bar{\chi}\in N(\bar{\alpha}^1)$. In every coset $N(\bar{\alpha}^i),\ i=2,\ldots,n$ the number of choices of a single vector equals to q^{n-1} . So the number of cosets $C_{\bar{\chi}}$ containing vector $\bar{\chi}\in N(\bar{\alpha}^1)$ equals $(q^{n-1})^{n-1}=q^{(n-1)^2}$. As every $C_{\bar{\chi}}$ covers its specific vector $\bar{\chi}\in N(\bar{\alpha}^1)$, it cannot be absorbed by other $C_{\bar{\chi}'}$. Thus, for a fixed value $i\in\{1,\ldots,n\}$, there are $q^{(n-1)^2q^{n-1}}$ different coverings. As every coset H_i has at least one vector, that is not being covered by other cosets H_j , $j=1,\ldots,n$, $j\neq i$, it is guaranteed that for each $i\in\{1,\ldots,n\}$, we will have a coset B_1 , which is not contained in L for other i-s. So we get at least $\left(q^{(n-1)^2q^{n-1}}\right)^n$ different irreducible coverings, and the lemma is proved.

Now we can prove the main theorem.

Proof (Main Theorem). Substituting n with $\frac{n}{2}$ in (9) in case of $n \equiv 0 \pmod{2}$ and with $\frac{n-1}{2}$ if $n \equiv 1 \pmod{2}$ we get the lower bound for t(n)

$$t(n)q^{\left(\left\lceil \frac{n}{2}\right\rceil -1\right)^2\left\lceil \frac{n}{2}\right\rceil q^{\left\lceil \frac{n}{2}\right\rceil -1}}$$
.

Obviously, maximal cosets in a linearised covering for any subset N form an anti-chain. Thus using (1) we have that the number of maximal cosets is not greater than $e^{4/3}q^{(n+1)^2}/4$.

Observe that the maximum number of cosets in any irreducible linearised covering does not exceed q^n , so we can state that

$$t(n) \le \sum_{k=1}^{q^n} \left(e^{4/3} q^{(n+1)^2/4}_k \right),$$

where $\binom{m}{s}$ is the binomial coefficient C_m^s . Finally we get

$$t\left(n\right) \leq q^{n} \left(\begin{array}{c} e^{4/3} q^{\left(n+1\right)^{2}} \, {}^{!}\!/\!\! 4 \\ q^{n} \end{array} \right) \leq q^{n} \left(e^{4/3} q^{\left(n+1\right)^{2}}\!/\!\! 4 \right)^{q^{n}} = q^{q^{n} \frac{(n+1)^{2}}{4} (1+\varepsilon_{n})},$$

where $\lim_{n\to\infty} \varepsilon_n = 0$. The theorem is proved.

References

- В. Габриелян, "О метрических характеристиках, связанных с покрытиями подмножеств конечных полей смежными классами линейных подпространств", Институт проблем информатики и автоматизации, Ереван, 2004.
- [2] А. Алексанян, Дизъюнктивные нормальные формы над линейными функциями (Теория и приложения), Ереванский государственный университет 1990.

Վերջավոր դաշտերի ենթաբազմությունների գծայնացվող փակուղային ծածկույթների քանակի մասին

Հ. Նուրիջանյան

Ամփոփում

Աշխատանքում ներկայացված է 2-ից մեծ բնութագրիչով վերջավոր դաշտի ենթաբազմությունների փակուղային գծայնացվող ծածկույթների քանակի վերին և ստորին սահմանները։ 2 բնութագրիչ ունեցող վերջավոր դաշտի դեպքում, այդ վերին և ստորին սահմանները ստացված են Ալեքսանյանի կողմից։