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Abstract

In this work the problem of interferometric phase reconstruction is considered. An
automatic windows size selection algorithm is proposed which in combination with
earlier developed PAP (pointwise approximation of phese) algorithm provides stable
results even for bad quality of interferogramms. Experimental results show that com-
bined algorithm demonstrates better performance in comparison with its original ver-
sion,

1. Introduction

Many coherent imaging systems utilize the phase coherence between the transmitted and
the scattered waves to gather information about the physical and geometrical properties
of reflecting objects such as shape, deformation. movement. and structure of the objects
surface. Phase estimation plays, therefore, a central role in these coherent imaging systems.
For example, in Synthetic Aperture Radar Interferometry (InSAR) the interferometric phase
can be used to make extremely fine measurements of surface topography, deformation, or
velocity [1. 2, 3). In adaptive optics the phase measurements provide estimates of atmospheric
turbulence effects on an optical imaging system [4, 5. 6]. These atmospheric distortions are
then removed through the use of a deformable focusing mirror. In magnetic resonance
imaging (MRI) phase measurements from 2-D or 3-D MR images can be used for such
purposes as estimating blood flow rates [7] or separating water and fat signals [8, 9].

In all these applications, the absolute phase extracted from an actual signal is wrapped
into the interval (—m, 7| and called principal or wrapped phase. If absolute phase value is
outside the interval (—, m], the observed value of absolute phase is wrapped into this interval
by addition or subtraction of some multiples of 2x. The relationship' between the wrapped
phase 1 and the unwrapped (absolute) phase ¢ is stated as

Yy=¢+2rk, Y€ (-mm] (1)

In the applications mentioned above the wrapped phase 1 is useless until 2r phase disconti-
nuities are removed, which is realized by using phase unwrapping algorithms. Simply stated,
the phase unwrapping problem is to obtain an estimate  for the absolute phase ¢ from the
wrapped values 1.
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Measured wrapped phase are usually corrupted by noise which makes phase
unwrapping p::lblu:no;?l: difficult. l‘:.I']m phase unwrapping from noisy data starts from the

following observation model:

T4

29 =W(p+Ad), (2)
tive to ¢, and zy is the observed noisy wrapped phase.

the noisy absolute phase ¢-+A¢ to the basic interval
oisy data is to restore the absolute phase ¢

where A¢ denotes a random error addi
W is o wrapping operator transforming
(—m, 7). The phase unwrapping problem for n
isy wrapped observations zy.
&O‘Tntfeh:;‘:yper, we propose new mgmﬁc phase reconstruction a.!gori_thm based on two
independent idens: pointurise approzimation for design of nonlinear esifunators and adap-
tation of these estimators to unknown smoothness of the spatially varying absolute phase.
Pointwise polynomial imation procedure introduced in [10]_ and ca!_led PAP (point-
wise approximation of phase) is used for approximation, while the intersection of confidence
intervals algorithm (ICI) is used for adaptation.

In the PAP algorithm the pointwise approximation is applied for direct approximation
of the absolute phase. For this approximation it uses a polynomial fit in a sliding window.
The window size, which was considered in [10] as invariant. and the order of the polynomial
define the accuracy of this approximation.

The window size h is a crucial parameter for the accuracy of estimation. When the
window size is small, the approximation gives a good smooth fit of signals. but then fewer
number of observations are used and the estimates are more variable and sensitive with
respect to the noise. Theoretical analysis and experiments show that the efficiency of the
local approximation estimates can essentially be improved provided a correct selection of the
window size h. Therefore, in this paper the window size is considered as a varying adaplalion
variable.

ICI adaptation algorithm searches for the largest local window size where the variance
and the bias of the phase estimates are balanced. It is shown that the pointwise polynomial
approximation combined with ICI is efficient and allows to get a nearly optimal quality of
estimation in particular for many image processing problems [11]. ICT algorithm returns
adaptive windows sizes for each pixel which is giving possibility to automate the PAP algo-
rithm.

2. PAP Algorithm
Let us recall the basic ideas of PAP algorithm [10]. As a observation model we use the
following one. Let

¢=[d(z.y) eR,z=1,...Nyy=1,.. M}, (3)
be the original absolute phase. The observation model is stated as

u =cosp+m, U =sing-+ny (a)

where u; and up are the so-called in-phase (cosine) and quadrature (sine) components of the
absolute phase ¢, and n; and n; are independent white Gaussian noises. Then the wrapped
phase gy is calculated as follows:
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g¢ = arctan uﬂ (5)
1

We mention that, particularly in optical interferometry and InSAR, the presence of additive
white Gaussian noise in the in-phase and quadrature components is in fact the commonly
adopted model [12, 13, 14, 15].

If we consider cos and sin of Equation 1, the difference between wrapped and unwrapped
phases disappears (cosy = cos ¢ and siny = sin¢) and we can use a fit of these transformed
ohbservations for the absolute phase reconstruction. We consider observation in transformed
domain (using cosy) and siny) because in phase domain wrapped phase is discontinuous evan
for a continuous absolute phase because of non-linear characteristics of wrapping operator
W. We also assume that the absolute phase ¢(z, y) is a continuous function of the arguments
z and y and allows a good polynomial approximation in 2 neighborhood of the estimation
point (z, y).

We assume that observed data is given in phase form (5). Then we calculate

o = coslgy). g2 =sin(gy). (6)

which are correspond to transformed noisy observations. According to Equation 2 we can
rewrite them in the following form:

o = cos(d+ Ag). g2 =sin(¢p+ Ag). (7)
where Ag is an error additive to ¢ caused by observation errors in gy.
The local polynomial approximation is applied in order to approximate absolute phase
o as an argument of harmonic functions in Equation 7
Let us now introduce estimates of the absolute phase. Assume that in some neighbor-
hood of the point (z,y) the phase g(z.y) can be represented in the following form (vector
representation of the truncated Taylor series) [11]:

&{3111 ¥ P) = QT(::I! vs) P, (8)

where @ = (gi.q2.93)" is a vector of first order polynomials ¢; = 1,2 = z.¢s = y, and
P = (p1.pa. pa)” is a vector of unknown parameters. The local fit loss function is defined as
follows:

Jn(z,y, P) % Z Wh,s [91 (z+Zy, y+vs) —-ausoi(z., Vsy P)r

+whs [02(2 + 20,y + 1) — sin §(zs, 0, )]
Zuhw [1 — cos (yt'{z +z,,y + ﬂl) = a(:ltvll P))] 1

wh,s = wy (T, lh) 20 (9)

The vector of unknown parameters P is defined as a solution of the following optimization
problem: '

P = argmin Jy(z,v, P). (10)



76 Automated PAP Algorithm for Interferometric Phase Reconstruction
The estimates of the phase ¢ and the first derivatives #), ¢ are as follows [11]:

#z,y) =a(z), B:(z,9) =Pa(@ ). éy(z,) = Fa(2,¥)- . (11)

wind efines borhood observations and their vgeights in E?tlmm.ion

gepoint ?:;Sh‘l?hs scal: mh ix: wh» defines the size of the window and is us.uall,r

used in the following form: wi(z,¥) =@ (& ¥).h> 0. For example, for the square uniform
wind = <h, skaudm-:l].otherwis& .

Eqwu;:m fﬁf:rhc!:!!:hﬂltln obtain simultaneously the estimates of the phase ¢ a.!:;d its

first derivatives ¢, ¢,. These estimates depend on the coordinates (z,y) and the window

m}.tmmh&hon of Ju(z,y, P) with respect to vector P can not be expneaned in an explicit
form and requires numerical recursive calculations using t_he vector—g;ra-dlent: 8pLi(z,y. P) =
(8p,J1(, v, P))mx1, and the second derivative (Hessian) matrix: 8{:3;#5»(1- i{ P) Ny
(8p.0p;Jn(Z, ¥ P))rsrxm, where M denotes the dimension o_f the vector P (in our case M = 3).
There are different procedures for calculation of the estimates. We consider the Newton

method, which can be expressed in the following form:
k)
pmu=p(n_m%,(I'Ty'u_ =001 = (12)

where P® are sequential iterations of P, 0 < ag < 1 is the step size parameter, and the
gradient 8,J;, is calculated for P = P(¥). \

The straightforward manipulations [10] give the Hessian matrix and the vector-gradient
in the form:

BpJn = Y wnotin (ge(z + Z0 y +2) — &(Za: Usr P)) Qs 11): (13)

H= z:thQ(f--ﬂa]QT(xnyl)' (1“1)

The recursive procedure (12) gives the estimate for any (z,y), provided that in the neigh-
borhood of this point there is sufficient number of observations (z,, y,). With independent
initialization for each point this is only a denoising algorithm which does not assume the
phase unwrapping. Because of that this pointwise estimate is used as an element of a
more complex procedure with a special sequence of the estimation points (z,y) arranged
with underlying intention to reconstruct continuous phase function ¢(z,y). For instance,
it can be a line-by-line sequence. Let us introduce a sequence of the neighboring points
{::l"l, p‘"’}_wu of a rectangular phase data. starting from the point (1,1) and going
along the first line, further along the points of the second line, and in a similar way up to
the last line. In this way we order all points of the phase data as a sequence.

A straightforward idea of the algorithm is to use for initialization of recursive estimator
(12) for the given point (z,y) the estimates already obtained for its neighboring points.

Let P (z(, ), PM) be the estimate for the point (z(™),y(™), provided that the
recursive pointwise algorithm (12) is initiated by the vector P{"). The proposed phase un-
wrapping algorithm is defined in the following sequential form:

Pn) = po) (g0) ym), plo-1)) (15)



Y. Barseghyan s

(z™, ™) =p”,

&(‘l) (z(n)' v(-]) R PS-J‘
ég} (z‘H].v(l}) GPL.J' (16)

N oay N2 M
The recursive pointwise estimator (12) is included in this recursive procedure. It is initiated
by the vectar P, which is the estimate for the first point (z‘".y‘”). This estimate can be

defined from the boundary condition or can be taken from the original observations.

Presented algorithm solves two important goals: noise suppression and absolute phase
reconstruction. Experiments show that the accuracy of the algorithm is high provided that

the absolute phase differences in the neighboring points are not large than 0.5 < 1 radians.
The accuracy is as high as small this difference, even for a high level of the random noise.

3. Estimate Accuracy

We rewrite model (7) using linearization in the standard additive-error form:

G =cosgpte, g=sing+te.
€ =—Ad-sing, € =A¢-cosgp. (17)

According to (5) for (7) we have:

Uy Up
h= : m = . {18)
Vd+d O d+d
where u; and u; are defined oy Equation 4. Using Taylor series with respect to small n; and
ny. we find that

7 ~cosp+ %sin’q&-m - %siuﬁwscﬁ-n,.
»;zsin¢—-}dn¢m¢-nl+%m’¢-m. (19)
Comparing these formulas with equations in (17) we conclude that
Ap=—singm+ 5 cosgemy (20)
With E{n,} = E{n;} = 0 and var{n;} = var{n;} = o® we find for A¢ that

E(0%) =0, o= E((80) = (21)

So for small noise we can assume that the random A¢ in Equations 7 and 17 is zero-mean
with signal independent variance o} defined by Equation 21.
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i he absolute phase ¢ and the
Thestimaﬁonaccumyiscaleuhwdudﬂer_wuhetwunm !
corresponding estimate ¢: eg(z,¥) = #(z,y) — #(z>y). This error consists of two compo-
nents: the systematic (bias) error to the deterministic ¢, and random error
We mstricttzut:e anr:.ln:;;n t:o:;‘;lms of smooth differentiable functions with bounded

second derivatives

mex ($ual + 70V + )l |ty (@ + 0 + %) [ (z + Zar ¥ + w)l) < La(z.y) (22)
£ P

oW W » in {9)

,y) is finite and Uy is a su rt of the wind
L ey S G A P (11) can be defined for the biss and

It can be shown that the accuracy of the estimates

the variance as follows:
v s Whs\lds + |Us )’ 3
B estep} < DED Epthallzd tILT (23
o? T,Whs 24)

var {eg(z, 1)} = T s

4. Automatic Window Size Selection

The Intersection of Confidence Intervals (ICI) rule [16. 17] is an algorithm used for the data
driven selection of the window size parameter (close to the optimal) for every point z. y.
The estimates @), = 6(:‘"). y"") (16) are calculated for a set H = {h;}J.; of increasing
windows sizes by < ... < hy. The goal of the algorithm is to select among these given
estimates {d'n.,{:r)}j_, an adaptive estimate ¢+ (z), A* € H, such that ¢n+ () is close to an
“deal estimate Gy- ().
Let us consider a sequence of confidence intervals

D; = [#n,(z) — Ton, én,(z) + Ton], (25)

where T > 0 is a threshold parameter, ¢y, (z) is the estimate of ¢. 7, is the standard deviation
of the estimate calculated according to Equation 24, a7 = var {eg(z,y)}, and i is the index
of scale k in H.

The ICI rule defines the adaptive scale as the largest h of those scales in H whcse estimate
does not differ significantly from the estimates corres ing to the smaller window sizes.
Let us consider the intersection of confidence intervals I; = i.; D;. Let j* be the largest of
the indexes j for which Jj is non-empty. Then the optimal scale h* is defined as A* = hj,
and, as result, the optimal scale estimate is ¢+ (z). Figure 1 illustrates the ICI rule.

The pseudo-code of the combined algorithm (PAP with ICI) is following:

1. Initialization of the vector P:
P=p0) =,p‘;“ =9 (zm'vm) -PS“ = A (,_.m, lf(1)) aPﬂ“ =AW (zﬂl,ylll) ]
where ¥ is the observed wrapped phase.

2. For every point of the sequence (:‘”.y""),n=2....,N,N,:
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(a) calculate the vectors P™ and the pointwise estimates 65,"’ according appropriate
Equations 12, 14, 15-16;

(b) repeat calculations for all h = hy, ks, .. ;

(e) apply the ICI .rule for selection of the best window size and the adaptive window
size estimate .

The Initialization is used only for the first point (zm. ym).

| i ?

X 4 ﬂul‘-’oh

L8 / . . f _

| r g ] Dy i';"' T |

. § Dy o :
Dy ?"’h ‘I = i

I* A I : f

? r - } . i 1 e

Iy h hy=h* hy

Figure 1. Illustration of ICI rule.

5. Experimental Results

For the aceuracy measurements of the developed algorithm we use the root-mean-squared-
error: RMSE = \/ T (qﬁ(x,,y.) - (z,. y.))i. With the PAP we use the uniform square

windows wy, defined on the integer grid Uy, = {z.y :2 = —-h.—h+1,...,0.....h=Lhy=
—h.~h +1....,0...., h — 1.h}. For ICI algorithm we use I' = 2.
The Pyramidal absolute phase test function. presented in Figure 2 (a). is defined by the

following formulas:

o(z.y) = % - min(¢y . P2, b3, Ba)-
¢1 =z, ¢3=255_z| (26)
$2=vy, a=255-y,

considered on the integer grid = = (0 : 255),y = (0 : 255), The maximum value of the
absolute phase ¢ is equal to 63.5 radians. The maximum difference between pixels is equal
to 0.5 radians.

Figure 2 illustrates the original absolute phase ¢ (a) and noisy wrapped phase gy (b)
obtained from ¢ according to Equation 5, with the standard deviation of the white Gaussian
noise o = 0.4. This figure also presents result of the reconstruction using PAP algorithm
combined with ICI rule (c) and the absolute errors of the phase reconstruction (d). Com-
paring the original and reconstracted phases, one may conclude that the noise suppression
and phase reconstruction is performed quite accurately.
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Figure 2. &) Original absolute phase ¢, b) ohsgrved wrapped phase g,. with additive
white Gaussian noise, c) reconstructed phase ¢, d) absolute errors of reconstruction.

Figure 3. ICI adaptive window sizes for Pyramid phase.

The adaptive window sizes shown in Figure 3 give insight how the adaptation works.
Mainly, the largest window size is selected excluding the areas near pyramid edges, where
the adaptive window size takes the minimum value. In this way, the algorithm enables the
maximum smoothing of the noise for the flat surfaces where the used linear model perfectly
fits to the surface and the maximum window size can be used. For the edges, small window
size allows to avoid the surface oversmoothing, however, at the price of a higher level of
random errors. The effect of the varying window selection is illustrated also by the last
image in Figure 2 (d) showing the absolute errors of the phase reconstruction. These errors
are minimal on flat surfaces of the pyramid where the window sizes take maximal values
and these errors are maximal along the pyramid edges where the adaptive window sizes are
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minimal.

Table below presents the numerical evaluation of the algorithm performance. For estima-
tion we use different windows sizes h = {1,2, 3,4} and different values of standard deviation
o of the white Gaussian noise in Equation 4. We can see a difference between the estimates
with invariant h end varying adaptive one. In all cases, the combined algorithm enables
minimization of RMSE values and even slightly better results that the best one achieved for
the invariant window size.

Algorithm/g | 1 | 2 | 3 | 4 | 5 |
PAP, h=1 | .040 | .072 | .109 | .152 | .199
PAP.h=2 | .048 | .060 | .077 | .099 | .124
PAP. h=3 | 071 | .076 | .084 | .005 | .109
PAP, h=4 | .100 | 102 | .106 | .111 | .120

PAP. ICI .028 | .052 | .071 | .091 | .111

In our first paper [10]. phase reconstruction is produced with a fixed window size. In
combined algorithm. presented in this paper. the phase reconstruction is performed on the
estimates with already adaptive windows sizes. Comparison of the algorithms is definitely in
favor the combined algorithr (PAP with ICI) which demonstrates much better performance
and stable results.
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Uyuniunmugjwd PAP wignphpd hGwntpbtipndtnphy
thnyh YbpwljubgGiwd hwidwp

8. RPupubnjuwi
Ushipofum

Uuunnwlpmy  pGGwplynd t  hGunbpptipndtnphiwywl  thoyh  JbpulwioGiwg
TuGnhpp: Unwowplynul £ upmnnthw(h ywihuh pinpdwl wjnniwnwgywd wignphpd, npp
Shunpywd JhG; wyn uinbndyuwd PAP wignphpih hbin wuwhnymd E uynb wpyymipGhpp
GnyGhuly hGwnbpdbpbGghn upuwnlbpGhph Juwin npwyh nbupnid: enpabph wnrymGpGhpp
gnyg b6 wwihy, np Shunjopwd wignphpdp & hwdbtiunwe GwiGwiw wigophpdh hbw
wwihu £ thoygh JhpuljwgifuG sznmpjwé qquih junjugnuip: 3



