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Abstract

n of multiple hypothesis testing for two Markov

sources with virtual example in terms of text categorization problem. Some numerical
experiments concerning Markov sources are considered. Our goal is to present. numeri-
cal illustrations of interdependencies of error probability exponents as & supplementary

to our previous theoretical paper 9]

The paper MIB an applicatio

1. Introduction

[2] formulated and solved a group of problems concerning loga-
rithmicaly asymptotically optimal (LAO) hypotheses identification and hypotheses testing
(HT) for many objects, which is based on result of [4] for testing of many hypotheses for
one object. In [3]-[5] the problem of multiple hypotheses testing for one Markov chain was
considered. In [8] three hypotheses testing problem for two independent objects with inde-
pendent observations was studied. Some numerical illustrations of the HT problem for two
independent Markov sources considered in [9].

We give a short survey of multiple HT applications areas for Markov sources.

In paper [12] Shannon founded the field of information theory which revolutionized the
telecommunications industry. In that paper, Shannon also proposed using a Markov chain
to create a statistical model of the sequences of letters in a piece of English text. Markov
chains are now widely used in speech recognition, handwriting recognition, information re-
trieval, data compression, spam filtering and text classification. Now there are numerous
text documents available in electronic form. Such documents represent a massive amount of
information that is easily accessible. Seeking value in this huge collection requires organiza-
tion; much of the work of organizing documents can be automated through text classification.
The accuracy and our understanding of such systems greatly influences their usefulness.

Now we make a short survey of some basic concepts and facts needed for further expansion
of the subject. The Markov source (MS) is a version of discrete memoryless source (DMS)
with a Markovian dependence of consecutive messages. A formal representation of MS is as
follows. Let X be the source alphabet and
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be a matrix of Markovian conditional probabilities.
MS produces & sequence of random variables {X,}%,. Let transition probability of
stationary Markov chain be

G(X, = z| Xn-y = u) = G(z|u), T,uEX,, n=12,...
The souree studied in this paper is defined by Markov chain with not necessarily unique
stationary distributions @ = {Q(u). u € X} corresponding to transition probability distri-
butions G (we will note this circumstance by the following way G — Q)

Y Qu)G(zlu) =Q(z), ze€X. (2)
ued

We denote the joint distribution of two consecutive messages as follows
QoG 2 {Qu)G(z]u), u.z € X}.

The conditional probability of the vector x = (2. 21, ....zx) € XN+ of the Markov chain
with transition probability G and stationary distribution @, is defined as the following
product

N
Q2 G¥(x) £ Q(z0) [] G(znlzn-). 3)
n=]
The conditional probability of a subset Ay € XN*! is the sum

QoGY(AN 2 3 QoGN(x).
xEAN

We are given M hypotheses about distributions of each of two independent sources (1),
He i Gy my—=1TM, k=11 (4)

for each source only one of them to be true.

The statistician based on N + 1 observations of the sources, namely on x' = {z}.....z}
and x* = {z3,...,7%} should make decision which of M hypotheses is true. The test ®"
for this model can be composed by the pair of tests @) and Y for the corresponding
objects: ®¥ = (o). o)), A test oof is a partition of XN*+! into M disjoint subsets A", If
x* € AR* then the test adopts the hypothesis Hy,,, . Naturally. in decision making in favor
of one of M alternatives he/she may commit different kinds of errors, which are denoted
by @4y tajmma (2Y), this is the probability of the erroneous acceptance by the test &V of the
pair of hypotheses {HlllH'a) provided that the pair (Hmu Hma) is true,

Qtydgtr s () £ @, 0 GN (A}) Qg 0 GX,(AR),
(hymi) # (lyma), my,l=1T,M, k=1,2. (5)

The probability to reject a true pair of hypotheses (Hj,, Hy,) is the following

%IMWIM(M) = Z mlhhlm(w}‘ (6)
(hda)st(m),ma)
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We study error probability exponents of the sequence of tests ®, which are called “relia-

bilities": : :

1 = 2 = .
Ei, iyjmy ma (ﬁ}é ]-EE‘::F —Tv' log ity tafm1ma (Qﬂ)r my, b M k=12 (7)

From (6) and (7) it is easy to see that

= ®).
B malmn,ma (®) =, 10 mmlﬂl..hrm.m( )

The matrix E('bl) = {E}, jojm:.my (2)} is called the reliability matrix of the sequence ® of

logarithmically asymptotically optimal (LAO) for

>
As in [1] we call the test sequence & . ]
— 1 it provides

this model if for given values of the elements Epmis,m Emmimm: m=1.

imal values for all other elements of the matrix E(").
anlTe rest ';?t.hs paper is arganized as follows. In Section 2 the theorem on multiple LAO
HT problem for two Markov sources is formulated. The numerical experiments results are

presented in Section 3.

2. Multiple LAO HT for Two Markov Sources

In this section we present the main result of multiple HT with reliability requirement for

pair of Markov sources, which was considered in [9]. !
For knowing correctly in which set of tests the elements of the reliability matrix Ep, mias.m.

B mimipt» M =1, M — 1 of the tests for two objects can be positive we divide the set of all
tests @ = (¢21.22) into following classes:

AL (&= (01.02): Bmim(ir) >0, m=TM =1, k=1,2},

B & {® = (1,p2) : one, or two m' from [1!21 exist such that Em"im'(‘r?k) = 0 for one
value of k, but Epypme(5) >0, k # j, and for other m < M, Emjm(2¢) > 0, k.j = Ty

C 2 {® = (71.12) : oneor two m’ from [1.M — 1] exist such that Eyjne() = 0. and

for other m < M, Emym (k) >0, k=T72}. .
In other words we divide set of tests into classes taking in consideration zero values of

elenients of reliability matrix of one MS. because if there are a zero element in reliability
macrix of a MS. then the corresponding element of the reliability matrix of both MS equals

to zero too.
Let us define the following family of sets for given positive elements E,, nijp.n: Emmimas:
m =1.M —1 to determine LAO test ®":

RL2{Q0G: D(QoG||Q o Gy) < Estmimms 3Qm : D(Q||Qm) < 00}, m =T, M =T,
RAE{Q oG : D(Q 0 G|iQ°GCm) < EmMimm: 3Qm : D(Q||Qm) < 00}, m =T, M =1,
RL2{QoG: D(QoGl|Q0GCm) > Exmimm, m =T, M =T,

R2{Q0G: D(QGl|Q0Cm) > Enpmm m=T M —1.
The optimal values of the reliabilities of the LAO test sequence will be the following:

A
Estimimon(Ebtnimn) st s B bjm (B s m)= B M (®)
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B ppmm(®)8 lof, D(QoGIQo0m). h¥my  bs=mes k=13, (5)

El'.ahlmnsfb-}gﬁ:uhh;m(f) o Eﬁmhlm{¢.)| me #F lk, k=12, (10)
ni s -
) | ]=(n’$ulhjf‘n-hhlm(° )- (11)
Now we will formulate the result on multiple LAO HT for two Markov sources.
Theorem 1. Let all distributions Gy,, m = 1,M, be different and absolutely continuous

relative to sach other: 0 < D(Qu©Gm||Qi10G1) < o0, L # m. If positive elements Em mjsm.
Eppmims- ™ = 1.M — 1 are given and the following inegqualities hold

Epnang < ,%IIEEHD{Q: 0 Gil|Q} o G))]. (12)
Eypap < k@ﬁ[“gf D(Qi 0 Gi||Qi 0 G)). (13)
Eosiiman 2 mi“l‘_"’%"i_’s'mb-.m',_;%iﬂf-p(q*°Gl”Q'°Gm)]' m=2M-1. (14)
Enm.otmm < :m'l:l‘-‘Ir‘:_)_‘_imp:l_.E';",,,},,,.,,,,.l n:.tln [ig'f.D(Q; 0Gl|@QioGy)- m=2M—1. (15)
then
a) there exists a LAO test sequence ® € A, the reliability mainz of which E($"*) is
defined as in to (8)-(11) and all elements of it are positive,
b) when even one of the inequalities (12)-(15), uritten for multiple hypotheses is violated,
then there exists at least one element of the mairiz E(®") equal to 0,

¢) for given positive numbers Eyyas, By, 1 =T, M —1, the reliability matriz E(®)
of the tests ® from the class B anmaﬁlymmﬁudemmuqudtnum.

The proof of this theorem is presented in [9].
Here are presented how the elements of reliability matrix corresponding to two indepen-
dent object can be expressed by the elements of reliability matrix corresponding to each of

two ohjects.

Lemma T.If for given Empm(2:), m = T.M —1, k = 1.2, elements of the reliability
malriz salsfy o the following conditions:

By < min[‘%‘;np(q'n 0 Gp||Qm o Gr), m= 2. M)

Ey < miﬂ[m_m%s:nlaw;qm)nmf&?wD{Qm 0 GnllQmo Gy, =2, M1,
then for ® = (i1, ) test there ezist the following equalities:

Eh.hl‘num{Q} = E!Il"l!(wl) + Ehbﬂl(ﬁ)! m * ll! my # h
If my # by ma—g = la—p, k = 1,2, then

Eh.blllll.ml (Q) - Ehlinb(ﬂai)-
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the Interrelation of Error Probabilities

3. An Example Showing
- ; consider a numerical illustration of multiple-HT groblm As an application
f:; ﬂ::leuo;Twﬁm Markov chains we consider text classification pmhlem:
Omthemntym,mclassiﬁcaﬁonhasbewmcom n_:fthekeymmquorm
nizing online information [13], [14]. It can be used to organize document dﬂt-a.b:m, ﬁlt.er
spam from people's email. A well-known to the automatic learning of linguistic
categories is based on Elman’s Simple Recurrent Network (SRN) [15].
tomatic assignment of documents to a fixed number

Thegnn!nftmttclamiﬁca:ionist.hean ‘ 1
of categories. In general, each document can be in multiple. exactly one, or no category at
all. Using machine learning, the objective is to learn classifiers from examples which assign

i ically. This is a supervised learning problem.

“w:o:;rﬁ?:n;:ﬂ ofa featu.repis for its distribution to be high_ly dependent on the
class. Words that occur independently of the class give no information for classification,
A natural approach to ing a metric for filtering features is to determine whether
each word has a class-independent distribution and to eliminate the word if it has such a
distribution. In statistics, the procedure of determining whether data is generated from a
particular distribution is known as hypothesis testing.

Let us create the following model of text categorization. Each document can be exactly
in one category with class labels assigned to the documents. We propose to model English
text as a Markov process where the probability of observing any text word is dependent on

the previous word.
is comprised of an ordered sequence of word events. Next we

Suppose that a document
make a Markovity assumption: we assume that the probability of each word in the document
is dependent of the previews word, but it is independent of its position in the document.
In other words if we have vocabulary X = {z1,....Z.} each category of the document
is described by the conditional probabilities matrix G = {G(z|u), u,z € X}. Now our
goal is to assign each document to the appropriate category, based on the designed rules
So we have M hypothesis and based on sequence of words the classifier has to decide if
a particular feature vector is likely to be drawn from a given category or not and try to
minimize misclassifications (error probabilities). .
For a good perception of the HT and text categorization theories it would be pertinent to
discuss an example with the binary set X = {0.1}.
In the example we suppose that there are given two Markov sources with alphabet &' = {0, 1}.
Suppose an outcome of language research that enables a representation of different (3)
languages genres reflected in the following transition matrices as hypothesis to test for each
of two texts:
Example 1

et (080 .~ (049 051 . 09 0.1
H: G“(u.l 0.9)' Bt G"(o.nz o.ua)' Hy7Ge ( 045 0.55 )
Example 2
e (0T 03 . [ 049 051 09 01
Hi2 Gy (0.3 0.7)' s G"(o.‘m 0.08 ) s G'=(o.45 0.55 )

With the same success this kind of model (namely, conversation of research subj
hypotheses which identify those subjects) can be considered for other areas of classification.
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.5, speech recognition, handwriting recognition, information retrieval, data compression,
spam filtering, etc.. Normally in this kind of categorization problems the performance of
algorithms is discussed in complexities point of view. In term of this example we would
like o introduce a framework of problems where the quality of categorization of objects is
considered via error exponents analysis.

For above mentioned hypotheses, applying Theorem 1. and definitions (8)-(10) we got values
for all elements of reliability matrix, given fixed elements E; 3511, Ea2p2. Eivzna, Ea3p3. For
a numerical experiments we generate a sequence of those reliability matrices in the following
way. At first we initialize a matrix with fixed components equal to 0.01. By increasing of
those values by step § = 0.1, so as to keep the (12) - (13) conditions valid, we got sequence of
reliability matrixes. Based on that sequence we draw the surface of (B 2. E1 2112, E21121)
in Fig. 1. Applying Lemma 1 for each object we get the planss (Ep(Eyp), Eyp) and
(Eya(Eyy;), Eyyy) with the graphs in Fig. 2 and Fig. 3 (Fig. 4 and Fig. 5 in case of Example
2). respectively.

The surface in Fig. 1 illustrates the interdependence of reliabilities E p2. Ej2p2 and
Ezima-

Fig. 1. Surface of Ey 1133, E;a1.2 and By, for Example 1.

Note that in Fig. 2 starting from the value of Ey); 7 0.35 the value of reliability Eyj(E;;)
decreases faster.
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Fig. 2. Curve of Ey3(Eyj;) for the first object of Example 1.
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Fig. 3. Curve of Eya(Ex) for the second object of Example 1.

In Fig. 3 the value of reliability Eyj3(Ey;1) decreases faster starting from the value of
Eyy =~ 0.25. The last two figures show that, when one of the inequalities (12)-(15) is
violated, then the element Ey; of reliability matrix tends to zero.
Nuwmﬂdﬂpruentthemphawmngtwoswondmple
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Fig. 4. Curve of ElR(E‘il} for the first object of Example 2 .

E, Eana
Fig. 5. Surface of Ey ;pa, El.gn_g and E5 12,1 for the Example 2.
All calculation are made in MathLab environment.
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Pwquuthh Jupluditph unmqiwG ufuwGbph hwujwlwlwinpmGitph
gmghsGbph (muwpwnuip ophGwlGkpny

L.Sphqnpywi
Tdihmpnus

NunuiGwuhpdty t puqiwih JuwpludGbph wnmgiwé Tubnhpp i
wnpympGbphg puniugwd hunoppuigmpyuwl hwiwlwnpgh nhummﬁhgu:;l{h{mﬁgnﬁ
gl;pmnmpjmﬁﬂhp: Unufiwyh ophGwih nhwpmd Juunwpilby b6 pduwjhG hwowpllbp L

plwywgyt) howwihnpjuG dwwnphgh nwnppbph gpuiphijuljut wwinlbplbp:



