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Abstract

In this work we consider the problem of communication scheduling in wireless net-
works with respect to the SINR(Signal to Interference plus Noise Ratio) constraint in
metric spaces. For the powers of sender nodes we consider the linear power assign-
ment, which is one of commonly considered power schemes. We give a constant factor
deterministic approximation algorithm for scheduling in wireless networks, which are
given in some special class of metric spaces, which contains the Euclidean spaces. To
the best of our knowledge, this is the first constant factor approximation algorithm for
this problem. Simultaneously we obtain the approximate value of the optimal schedule
length with error at most a constant factor.

1 Introduction

A basic problem in wireless networks is the problem of finding the throughput capacity of a
network and using the network close to its capacity. The solution of this problem is related
Lo the maximum spatial reuse in the network. Given some set of transmission requests
(sender-receiver node pairs in the network, which we will call also “links”), the goal is to
schedule the transmissions so that all they can be done successfully in the minimum time.
The main factor affecting the successful data transmissions in wireless networks is the signal
interference of the concurrently transmitting nodes, which in general makes it impossible
to do all the needed transmissions at the same time: there can be a receiver node, which
cannot decode the data intended to it because of the “noise” made by other transmitions.
So one needs Lo split the set of requests into subgroups, in each of which all sender nodes can
transmit concurrently. Then all the data transmission can be done in a time proportional
to the number of different groups in the schedule. The goal is to minimize the number of
groups. which is called complezity or length of the schedule.

As the signal interference is the root of the scheduling problem, the solution depends
crucially on the model of the interference exploited for the calculations. In the most part of
the existing literature on this topic the interference in wireless networks has been described by
graph-based models, or protocol models. Those models are based on the communication graph,
in which two nodes are connected if they are in mutual transmission ranges, and if a node
transmits some data, then no other node in its neighbourhood (graph neighbourhood) can
transmit at the same time. Recent studies show that for the scheduling problem these models
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i from the assumption
realistic. Particularly, problems of these modals stem p

a;.;xn:t:e.:E:ctSbof son:elcnuza on othalyrs is constant in some disk around that nod?. and zero
: of that disck, whereas in reality the mechanism of the affect of a transmitting node
o:t:i!ieothm is em' tially more sophisticated. An alternative to the graph-based models
?s the physical model, which is more realistic than graph-based models. It assumes that the
affect; of & transmitting node on other nodes decreases proport_ionally to a constant power of
the distance from that node (if there are no obstacles). In this work we adopt the physical
n this model, the SINR (Signal to Interference plus Noise

communication. Based o ! A s
mfoustrdnu:‘i:&u considered for mﬂﬁ;-;s the possibility or impossibility of accepting the
i sender by the corresponding receiver.

m';‘lh:fu:?xon of thebyat:hodu.lins problem depends also on the'pomr levels of the nodes
in the network: emhmdscantransmitthadmwihhaspeqﬁcm. B?themom is
thepuwerofanude,thestmngwishhenisﬂ-ﬂmei‘ﬁd_b?’theml’vendedmver (also the
more is the “noise” made by that node to other trmmms:m!. Our results are mainly for
Enearpowcrassi@mmu,whiqhdousﬁthtmifmmpdwermm_mtsmusedinmost.ol'
currently designed MAC (Medium Access Control) pro'_coeola for wuele;m networks, due to
their simplicity and energy-efficiency. In the case of uniform power assignments the power
level of all sender nodes is the same throughout the network, and in the case of linear power
asaislmentnhepowofeach&endernodeispmporﬁomltoscons?&ntpuwerofthedismca
from the reciever node. As the linear power assignment is the minimum power needed to
deliver & unit signal strength to the receiver, it is considered a “good” power assignment
Eromhhapointofviswofenargymnmmpdon,wichisamcialmemsenmrmworkg_

2 Related Work and Our Results

There is a solid amount of theoretical work on the topic of scheduling in wireless networks
with graph-based models, as [7] and [11], which now are proven to be not as efficient for
this task as physical models (see [9]). The initial work considering the physical model
mainly consisted of different heuristics, which didn’t have proven guarantees for their results,
but instead were taking as a base some simulation results, which were mostly done on
network models with nodes randomly distributed in some region of the Euclidean plane,
The theoretical studies considering the physical model of communication started to appear
in recent years. They were considering arbitrary topologies of networks (arbitrary placement
of nodes) and providing algorithms with proven results. In [10] an algorithm is given, which
for a network on the Euclidean plane and n transmission requests, sets appropriate power
levels for the sender nodes, and produces a schedule of complexity O(I, log? n), where n
is the number of communication requests, and I, is a “static” measure of interference,
which can be calculated from the topology of the network. In that work there is no proven
approximation ratio to the optimal schedule length.

In [8] it is shown that there are some instances of the scheduling problem with uniform or
linear power levels, for which the optimal schedule complexity is Q(n), while with other power
assignments one could get a schedule of length O(log®(n)) for some constant e. Moreover,
in [1] they show that the same.is true for all oblivious power assignments, i.e. when the

_power level of a sender node depends only on the distance between the sender and the
receiver nodes.

For. uniform power levels in [3] an approximation algorithm is given, which is proven to
approximate the optimal schedule length within a factor of O(log(n)) in Euclidean spaces.
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In [5], improving the result of [3], an algorithm is given with a constant approximation
ratio. In [4] an algorithm is designed, which approximates the optimal schedule length with
uniform power levels within o constant factor, if the distances between the sender and the
receiver nodes are “almost” the same for all communication requests. The algorithm works
in 50 called “fading” metric spaces.

In [2] some measure of interference is introduced(let's denote it by I), which can be
calculated by the topology of the network, and it is shown that with linear power assignment
the optimal schedule complexity is (I), when the nodes are located in an arbitrary metric
space. In the same paper o randomized algorithm is given. which outputs a schedule of
complexity O(I + log? n) with high probability (and works for an arbitrary metric space).
Using this algorithm as & subroutine, also a randomized algorithm is given for the problem
of so-called multi-hop scheduling with fized paths, where the requests are lying on some
given directed paths, and they must be scheduled taking into account also their sequence
on the paths. This algorithm finds a multi-hop schedule of length O(J + log’ nD) with high
probability, where D is the length of the longest path.

In this work we improve the results of [2] for some specific metric spaces (including
Euclidean spaces), and give a constant factor approximation algorithm for scheduling the
requests in the case of linear power assignments. At the same time we show that the optimal
schedule length for the case of linear powers is ©(). Note that taking this algorithm as
a subroutine in the multi-hop scheduling algorithm of [2], one can get a slightly better
performance guarantee of O(/+log nD) instead of O(I +log? nD), using the same(essentially)
proof as in [2].

3 Notations and Formulation of the Problem

Throughout this work we assume the wireless network nodes to be statically located (i.e.
the network is not mobile) in a metric measure space X with a distance function d and a

measure ji.
The bal! in X with center p and radius 7 > 0 is the set

B(p,r) = {g € X|d(p.q) <7},
and the ring with center p, width w > 0 and outer radius r > w is the set
R(p,r,w)={g€ X|r—w<d(p.q) <r}.

For a ring R = R(p,r,w) we denote b(R) = B(p,r) and B(R) = B(p,r — w).
We assume that the measure p satisfies the following condition: for any two balls A and
B with radii a and b respectively,

8 < 3

holds for some constants K > 1 and m 2 1, which are specific to the metric space. Given
is a set of links L = {1,2,...,n}, where each link v represents a communication request
from a sender node s, to a receiver node ry.. Following the notations of [5]. we introduce the
“asymmetric distance” from link v to link w as the distance from v's sender to w's receiver,
denoted by dyy. = d (8, 7). We assume the distances d,,. to be non-zero for all v,w. The
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lengthuftheﬁnkoisdenotedbyd.,sd(a..r.}. Eauhtrmmﬁtber'a,hm‘pm
level P., which does not change. We assume that theatrmgth_?fthemmal decreases with the
dhmu&omthatrmmitter.more?uﬁﬁcaﬂy. the received signal strength from the sender
ofwszthereoa'mofﬂiu}’..=-—"-.whma>0dmomahepatb—lou=:pamt. For
mwrﬁerenoeweadopuhes}ﬂﬂmod .whmforalinkvthe'noder.suooufmmeim
a message from the sender & i and only if the following condition holds:

P.,,Zﬂ(z P..+N). (2)

wth;Olstheambientnoise.ﬁ>ldanotesthaminimumSlNRrequiredform
tob:smfuﬂyreceived,andSisthesetdfoonmmenﬂyscheduladlink& We say that
SisSINR-feaaiMeif&)ismﬁsﬁedﬁ:remhlinkvES. Throughout this work by saying
tha&nodumaaﬁgnedﬁmrpumlevdswemmthatthupmhvdufmdmmdmg,
isP.=qc¢,,whmqisawmtant,andbyuﬂnsthatthenodummgmdunifwm
puwlewh,wumeanthataﬂpummequalmmewmtantP. The problem we are
interested in is the following: we are given a set of links, and the goal is to partition that
set into the minimum number of SINR-feasible subsets or slots.

4 Auxiliary Facts
Hmwprmmtmmefam,whichwuwilluseinthesubs&queutaect.iona.
The follwing is a known inequality:
ol 8
e
Zesi=it 3)
. < il 1
whxchunbepmvenbynohmnsthat}:_—sf—dx+1.
=Y 1 z*
A proof of the following lemma can be found, for example, in [6], page 28.

Lemma 1. For reals a1, 02, ..-,0m(a; 2 0,i=1,2,...,m), and 1, 8(0 < r < 8),

(E) <(Ee)

holds, unless all a; but one are zero.

For the next lemma, consider any given real numbers a > 1 and ¢ > 0, and the functi
f@) = (a+c) —a'. Note that f(t) is a monotonically increasing function on [1 mt;ﬂ(;l;
F(t) >0 fort > 1. So f(t) < f([]) for ¢ > 1. For an integer k > 1 we have i

(a+ef —a*= "E (@+c)'a* " < kefa+ )",
fu=()

so we have the following lemma:
Lemma 2. For reals a > 1.c>0,121, holds (a+c)l_als It10(3+c)rl1*l_
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5 The Algorithm for the Linear Powers

In this section we consider Lthe linear power assignment. and present a scheduling algorithm,
which is very simple and approximates the optimal schedule length within a constant factor.
Before stating the algorithm we define the affectance of a link, whick is the analogue of the
affectance for uniform power levels from [5].

Definition 1. The affectance of a link v, caused by a set S of links, is the following sum of
relative interferences of the links from S on v,

)= % (ﬁ-)

With the affectance defined, SINR constraint for a set of links S and a link v in case of
linear power levels can be written as

LN
as(v) < R (4

Note that linear power assignment with ¢ = SN is the minimal possible assignment for
fulfilling the SINR ratio in case when there are no other nodes transmitting. So we assume
¢ is greater than BN. Usually the related literature the ambient noise is assumed to be 0,
but here we don't need to do so. For simplicity of formulas we replace the right side of (4)
with 1/.

5.1 Formulation of the Algorithm

Below is the sequence of steps of the algorithm. The idea is to sort all the links in descending
order of their lengths, and starting from the first one, consequently add them to the first
slot, in which already scheduled links influence this one no more than a predefined constant.
So it is a kind of a “first-fit” algorithm. The algorithm is similar to the algorithm designed
for uniform power levels in [5], but the proof of the approximation ratio is basen on different
arguments. :

Algorithm 5.1
TTnpuL: the links 1,2....,n

2. sort the links in descending order of their lengths: ;. [y, . ... L,
3.5 ~0i=1,2,...

4. fort —1tondo

4.1 find the smallest 4, such that ag, (I}) <

4.2 schdule l{ with Sf: S{ = S,‘ u ‘(
5. output: (S5;.5s,...)

%=

Here ¢ > 3 is a constant, which will be defined in coming sections.
It is easy to see, that the algorithm is polynomial. In the next section we will give the
proof of correctness of the algorithm.
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5.2 Correctness of the Algorithm
Wastsrtwitha.simplelemms.whichshm&ha&iftwolink!mscheduledinthem“ht'
thmtheynunnotbe“booclme“ together. Let the links w and v be assigned to the same
slotbythaa[gnri:hm,anddr-mn{dw,d,.}.

Lemma 3. }-’branyhmlﬁakawandv, which are as above, the following holds:
d"3(c—z}d,d,.,g[c-—2)dandd(6m3u}2(c'3)d-

Proof. SJ:ppoaed = dyy = Ouw- Then from the definition of the algorithm it follows
dw)* ¢ L 40 duy > ¢ ey On the other hand, by the triangle inequality d, >

that | =—

)

oy — By — e 2 (€—2) v The last inequality follows from the second one and the triangle

inequality: d (s, 8u) = dur — dow 2 (¢ = 3)dw- ® -
Considerthesetof]lnanassigned to the same slot by the algorithm, and v € S. Let

S’denotethsaubeetofs,whichwntaimthelinkushorwr.hmu.

Lemma 4. There ezists a constant co, depending only on m, K ond a, such that for the

link v and the set of links S~ as above,

Co
ag-(v) < =9

: m
holda,;fa>m+1_rm.l.

Proof. For simplicity, throughout this proof we denote ¢ =c—2. Consider the partition
of the metric space into concentric rings R; = R(rv, (i +1)qdw, 9dey) fori =1,2,..., and the
ball'B{r..qd..). From Lemma 3 and definition of S~ it follows that there are no senders from
S~ inside B(ry,qdyy). Now for some i > 0 consider the links from 5~ with senders inside R;

and denote that sst by S;. Let's for each link w detotafy = L=  Tvor it flows

l&om the last inequality-of Lemma 3 that for each such link w the ball B(s,, p,,) doesn't
tgem?stahemupogdmgbaﬂofwotherﬁnk. Further, all such balls are contained in
mm_ R(re. (i + 1)gd + Py, @dve + 2p5). So from the countable additivity of u it

Y A(B(sw: pu)) < p(RY) = p(B(Ry)) — p(b(Ry)) or, as K 2 1,

wes”

WB(sw,pe)) | _ BORD) _ o BO(RD)
2 uEE) < wBE) <" uBm)y ®)

From (1) we have the following inequalities for each link w:
H(B(RY) igde —py \"
et <~ (s p.) i

F(B{‘ln PI')) 1 P o,
HBE) - K (—(.- F1)aden ¥ p.)
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vwhich combined with (5) leads to the following:
S A < K (((i 4 1)qdus + po)™ — (igdee — p)™) <

weST
K2 (gdey)™ (4 2)™ = i™) < 2[m]K? (gdee)™ (i +2)™", (6)
. where we used Lemma 2 and the fact, that p, < gdv. Dividing both sides of (6) on ("2;1)
- and replacing g — 1 by ¢/2 in denominator, we get
Y dn, <22 fm] K2 (i +2)™1. (M)

wES™

Note that the affect of the senders from S} on v is ag-(v) = > (%) . From the
wes,

triangle inequality and the definition of ring R, the following holds: dyy > d(sw, 8) —

d{&-;"ﬂ} 2 (q = l}dn-’l 50 z' Q'
€5
) = =1ty e
Using Lemma 1, from (7) and (8) we get an upper bound on the affect of the senders from

R
(s )™ ([ Ko -+ 2)fm) "
% () < = i~ (g — 1)dwi)” 3
2 8= ([m]K?)™/™ L T L T

PP 1 0 )

(q._l]nj“( - J
Byau,n'r‘mﬂngweri, and using (3), we complete the proof of the lemma (as we have o >
m+1—fm'|}:

8 ([m]K2)/™ &= 1
GS'(U) 5 {q = 1)0 Z _n{-il;[-].} <

=] 1
8 ([mlK)”™ a(m+1—[m])

(g—1)= a(m+1-[m])—-m’

8 ([m]K?)™ a (m + 1 — [m])

850 we have ¢ = AT m]}— %

m
Lemma 4 helps to prove the fi ing theorem.

m ‘ ;
Theorem 1. Ifc> {/f(co+1)+3 anda > m, then the output of the algorithm

is a feasible schedule.

Proof. Let v be any link, which is scheduled with a set of links S. Consider all the
links in S. which are longer than v. From the definition of the algorithm it's clear, that

those links affect v in total no more than % According to Lemma ??, the affectance of
the links shorter than v is less than E—‘%F' so the overall affectance on the link v is
c o+ 1 1

; 1
ﬂg{l}}*{;i W_WSE. | |
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5.3 The Approximation Ratio
In this section we will show that the algorithm outputs a schedule, which is longer than the
optimal one no more than by a constant factor.

The following definition is taken from [2].

Definition 2. LetSbeaaetqumiuionfeqwfsmdpcnodehtfummrk, Theh e

define =
— S i _dwe ) | and I(S) = maxI,(S).
1,(5)_-§m{1. (d{a..p}) } (8) = maxT,(S)

WhenSisl:hasetaEalllinks(whjchwadenotadbyL).wemethenotation!(b)zf_

I is a measure of interference, which in [2] is shown to be a lower bound(with a constant
mm)hopmdmauhlmgthinmofﬁnwpmmuz if T is the minimum
schedule length, then T = Q(I). Mompeciﬁmu%f.inlﬂl it is shown that if Ry, Ry...., Ry is

. 3a -
an optimal schedule of length T', then I(R) € ——+1fori=1,2...,T. It's then easy
to see, that if S is a set of links, and S = US;, where 5;NS; = 0 for i # j, then

I(8) < Z‘: 1(8:), (9)
50 it follows that -
T2 3535 (10)

This bound is proven in case when N = 0, but it is easy to see that it holds also for the case

of non zero ambient noise.

Theorem 2. a) If ¢ > 3 and the output of Algorithm 5.1 is a feasible schedule, then it is a

constant factor approzimation for scheduling with linear powers,
b}ﬁ:apﬁnduhdﬂbtmgﬁiﬂmscjﬁnmpqwmhe(!).

Proof. Suppose A, Az, ..., A, is the output of Algorithm 77. Let v be a link from A,.
By the definition of the algorithm we have

an () > 2 i <t.
As much as ¢ > 1, we have also
1 [}
T A) > 00 I (6) = 32 1o (4) > (¢~ Dz
On the other hand we have
I (L) < I(L), so t < I(L) + 1,

which together with (10) proves the theorem. B
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i Conclusion and open problems

In this work we tried to do a step towards finding some approximations for optimal schedule
lengths for linear and other power assignments. For linear powers we found & constant
factor approximation algorithm and the approximate value of the optimal schedule length
with error at most & constant factor. These approximations can also be useful for future
attemps to find and evaluate distributed algorithms for the scheduling task. Our results
work for some special metric measure spaces, which include Euclidean spaces with standard
Lebesgue measure (note that for k-dimensional Euclidean space m = k, and K = 1, so our
results hold with o > k).

An open problem is to extend the obtained results for this problem to more general
metric spaces and for less constrained values of the path loss exponent a: the constant
factor algorithms obtained so far are proven to work only for sufficiently “smooth” metric
spaces, such as Euclidean spaces, and for sufficiently large a(except the algorithm from [4]
for nearly equilength links, which still puts requirements on ).
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