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Abstract
A multigrid preconditioner for the matrix arising in finite element
approximation of model elliptic houndary value problem is proposed.
Hierarchical triangular grids with bisection form the basis of multigrid
construction. The main purpose of the paper is to evaluate the arithmetical cost
of a preconditioner step.

1. Introduction
The algebraic multigrid preconditioning method is an efficient tool for numerical solution of large linear
systems with finite element matrices. An approach to construct algebraic multigrid preconditioners of
optimal order of computational complexity, so-called Algebraic Multigrid/Substructuring Method (AM/S-
method), has been suggested and deve}oped in [1,2]. A series of comprehensive results for elliptic
boundzary value problems have been obtained using that methed [3-6].

When constructing multigrid preconditioners, hierarchical grids based on the bisection of mesh
cells are usually used. However, other types of mesh refinement are also of great interest. We aim to
study an aﬁz of different rates of mesh refinement on the properties of AM/S-preconditioners. With this
purpose, in the paper we construct and evaluate computational complexity of multigrid preconditi
hierarchical triangular grids based on bisection. g i o

Let us formulate a model elliptic boundary value problem for which we will construct
AM/S-preconditioners. s M ompty

Suppose A is an equilateral unit triangle with boundary I" in the plane of variables x=(x,,x,).
Denote by H,(A) the subspace of the Sobolev space H'(A) that consists of the functions vanishing on
I". Consider a weak formulation of Dirichlet boundary value problem for Poisson equation: for a given

Sunction f € L,(A) find the function u € Hy(A) such that
[IuVwds = [ fiwax Vwe Hi(A) (1.1

(here and below dr = drdr, )
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2. Hierarchical triangular grids based on bisection
Let 7, be an initial uniform triangulation of the domain A, formed by cquilateral triangles with side
length h, (Fig.1). Clearly, that h, =1/d,,, where d, is an integer. We will consider the triangulation 1,
as the coarsest one. Constructing the hierarchical sequence of grids is based on the refining procedure

which is performed by subdividing triangular ceils of the previous triangulation into four cmsnvmt ones
(Fig2). In fact, the refinement is carried out by bisection of the sides of triangular cells.

Fig. 1 Initial triangulation 7, of the domain A (k, =1/4),

Using refining procedure just described we obtain a sequence of triangulations r,,
k=0,1,2,..,p, where p>1 is an intsger. Note, that 7, is the finest triangulation. Let the
triangulation 7, correspond to the k th level of the refinement. With any triangulation 7, we associate
the grid m, whose nodes are the vertices of triangles (iriangular elements) which form the triangulation.
in doing so. @, is the coarsest grid while @, is the finest one.

L85

Fig. 2 Refining procedure (bisection).
For all values k =0,1,..., p we introduce the following notation:
N, is the set of nodes of the grid @, which belongto A (don't belong to I');
n, isthe number of nodes in the set N, ;
Gy is the space of grid functions defined on the set N, ;
V, is the space of functions continuous in A, linear in each triangle of the triangulation 7, and
vanishing on I'".
The one-to-one correspondence holds between piecewise-linear functions from V), and grid functions
from (7. Namely, a function &€ ¥, is put in correspondence with a grid function u € G, the ith
component of which equals to the value of  the function # at the i th node of the set N, . In other words,
the function @ € ¥, is a prolongation of the grid function u € G, in function space V. Let us denote
this operation by symbol prol. Thus, & = prol(ue G, :V,).
Let &, be the step size of the uniform triangular grid @,, k=0,,...,p. Obviously, that
= h,/2" . Define integers d, = 1/h,, k =0,1,..., p. It is easily seen that
d,=2'd,, k=0),...,p. 2.1
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The following auxiliary statement holds true. It will be used below, when calculating the
arithmetical cost of & precanditioning step.
Lemma 2.1. Forall values k = 1,2,..., p the estimations
4< T <448.2" 22)
ey B
are valid.
Proof. By simple considerations we get the expression

di —3d, +2
n =¢._25_, k=0],...,p. (23)
n, d’-—}d +2
T G e e LA AL S S A (D
sing this, we M, di,—3d,+2 G
1 n d’—3d +2 d, -1
Since d,_, =1d,, then ~ —L=4t—=o=4-l—.
ince dp.y =5 % n,., d;-6d,+8 d,-4
Taking into account (2.1), we get

'
g =l e
., 2'dy- Rl @4
We can assume that d, 24 (in this case n, 2 3). Therefore,
2'd, -1
Lol Lot .2t =
|<2,d°_451+22 . k=12...,p. (25)

Hence, from (2.4) and (2.5) we obtain the inequalities (2.2). O
By construction we have N, O N, k= 12,..., p. Therefore, at the k th level the partitioning

N, =NPUND (2.6)

can be defined, where
NP =NAN,,, NP =N, @n

(see Fig3). Nodes from the set N;” we will call old nodes of the k th level while the nodes from N®

. ]

will be referred to as new nodes of that level. Let n}” (i=12) be the number of nodes in the set N}”
A

Then
{
n=n-n,,, n}z‘_ =n_, - (2.8)

The following ordering of the nodes vill be used: the nodes from N (new nodes) are munbered first in
some order and then the nodes from N{*' (old nodes).

: !-'Ig,.3 Partitioning the nodes ( o - old nodes, ® - new nodes).
n accordance with the rule for numbering the nodes, any grid function # € G, may be represented

in the form
g ul }N:II
ue[a . weat -z,
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where )" is the space of grid functions defined on the set N,".
Let k 2 1. Consider a triengular element e € 7,_, . At the next level of refining the grid the element
e is subdivided into four triangular elements of the k th level. As a result, on the k th level the element
€< 1, , urns into a superelement E (see Fig4).

(a) (b)

Fig. 4 (a) An element e € 1,_, and (b) corresponding superelement E€7, .
For all values k =1,2,...p let T, be the set of superelements of the k th level.

3. Finite element matrices on hierarchical grids

Let us consider the finest level of refining the grid. The finite element problem, corresponding to the
problem (1 1) is formulated as follows (see [7,8], for instance): find a function ¥ € ¥, such that

_[wwdx [ fvdx vweV,. @3.)
The problem so defined leads to the system of grid equalmm
Av=g, (32)
where the symmetric positive definite matrix A of order n = n,, is determined by the relation
W Au= [ViVivdx Vu,weG, (33)
4

(here we have i = prol(u:V,) and w= prol(w:V,))
For our multigrid construction, simultaneously with the finite element matrix A let us define finite
element matrices A'', k =0,1,..., p with the help of the relations
W A" = Vi Vivdx Yu,weG, . (34)
[\

According to (3.3), that A'"' = A, Thus, we have a sequence of finite element matrices
A= Am,Arrd:."_.Aﬂl’Atﬂ) (3.5)

associated with hierarchical grids @,, 0< k < p. The matrices A’ are referred to as stiffness matrices
(sec [8], for instance).
For the values k =1,2,..., p, according to the partitioning (2.6) of the nodes in the set N, the
matrices A"’ admit block representations
Am A‘lll ]Nm
A® = [All‘l‘:’ ,f:‘;’ ]NE!' (3.6)
with n}" x ny"' submatrices A:” (i, j=1,2). The block A%’ in (3.6) is a nonsingular diagonal matrix.

4. Two-grid preconditioners
Let us first formulale an auxiliary statement which forms the basis of further considerations. Consider an
equilateral triangle e with vertices numbered 1,2 and 3 (Fig.5).
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1
1 2
5 Numbering the nodes of equilateral trizngle.
Suppose u and v are some functions defined on the set of nodes of that triangle. Insert a bilinear form

@, (u,v) = (1, —u)(v; - v)+ (4 — 1)V, —Va) + {u, =, )(v, = W), 4.0
where u, and v, are the values of the functions and v, respectively, at the i th vertex. The following

statement may be proved by straightforward calculations (see also [2,3]).

Lemma 4.1. For any functions u and v linear on e the following equality holds

jVqua‘x = %F’. (u,v). (42)

Consider a refinement level k, 0<k < p. The finite element matrix A"’ has been defined with
3.4),l.glu:\mit=&ntrdaﬁnninmefonn-
W A=Y [ViVivds.

vur .

4.1, we find that the matrix A’ satisfies the relation
WA = %—3—29,(5,1?) Vu,weG,. (4.3)

the help of the relation (
From here, using Lemma

This relation will be essentially used in constructing the preconditioners,
With each superelement E€ T, 1<k < p, the nodes of which are numbered as shown in Fig. 6,

we associate a bilinear form
¢'(ﬂ,v) = (u —u;x"l _"s)+("| -1 )(v, —=¥,) + (uy — 15 )(v, —V) +

(g, —u,)(v; — V) + (uy — Yy =) + (4 = ug)(v; — vs), e

where , and v, are values of the functions  and v, respectively, at the i th node.

Fig. 6 Numbering the nodes of the superelement E€ T, .
Let us address now to the relation (4.3), for 1 <k < p. If we group the elements of the & th level
1o form the superelements then the matrix A"’ satisfies the relation
] oo Ly
WAy = = Z[@s(u,w) +20,, (u.w)] Yu,weG,. (4.5)

EsT,
where e, € 7, is a triangular element whose vertices are the midpoints of the superelement £ (Fig.6).
Let us define a symmetric positive definite matrix B'*’ of the orcer n, by means of the relation



A Renjbar 177
k) Jg 57 v
W B u=?z¢,{u.\v} YuweG,. . (48)

Eel,
Comparing relations (4.5) and (4.6), we note that for each superelement £ the bilinear form associated
with inner triangular element e; € 7, has been eliminated. By virtue of that the upper left block in the

block representation
: Bu; & Nlll
B" n[Al;lll 4;']:”:!' (4-7}

of the matrix B, i.e. the block Bj;" becomes a diagonal matrix while the blocks A%, A% and Ay
are identical with those of the block representation (3.6) of the matrix A"’ We uulloom:derdnm
B" &5 a preconditioner for the matrix A", 1<k<p.

Let
S =AY - 4B AL @8
be the Schur complement of the matrix B'’, represented in the block form (4.7). Then the matrix
B’ takes the form

= [3:' 3 - ] : 4.9)
T ‘
The following important result holds true (see [2]).
Theorem 4.1. For all values k =1,2,..., p the equality
S5 =%A""’ (4.10)

is valid.
Based on Theorem 4.1, the matrix B"), where 1<k < p, will be referred to as two-grid

preconditioner for the matrix A% . As follows from (4.10), the block representation (4.9) of the matrix

B'™ can be written as
B4
B =[A;‘:' ]A""’-I-A,‘"&"’ A 4.11)

Throughout this paper we will denote by sp(A) the spectrum of a matrix A. The following

stateraent can be proved using the technique of transition onto the superelement level developed in [1,2].
Theorem 4.2. For all values k =12...., p we have

p(BYAM)c1,5] . (4.12)
As a simple consequence of Theorem 4.2, we oblain the following estimates for the spectral
condition number of matrices B4 AW je.
g pb f::,_ =
x( )= R‘,: <5, k=12,...p. (4.13)

5. Multigrid preconditioner

Thus, we have constructed the sequence of finite element matrices
AP AV, AP = 4 (5.1)
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x id preconditioners
and the corresponding sequence of two-grid B, 89,87, (52)
itioner for the matrix A using the inner Chebyshev iterative
R s h have been developed in [1,2,9].
 The idea and main principles of the approac . ; o
prwednr;u4 11) we have obtained two by two block representation of the two-grid preconditioner B,
lsks;(l.:elmc o 521 and for values k=12,..., p successively define matrices

Now construct a multigrid precond

oo g
2 L: TR+ AVBYAY | e
RY = 49, Jor k=1,
1
< 2 b=1) =1} (.I»l'l’l =1} (54]
RU-D = 40| 7 u_l‘[ b _gt-iM A , Jor 2<ks<p
o

(here J*-"is the identity matrix of order n,_, ). In (5.4) we have
i=I:2y---i"|

2
9? ! =(ﬁl-l +al--l)+ (ﬂl-l 'ﬂa-l)'}” :
s '}s]m the roots of the Chebyshev polynomial of the first kind of degree s and [a,,l.ﬁ,_,] is the
segment containing the spectrum of the matrix M *~"”' 4"~ that is
sp(M {'_“-'Au-n) c [al-l’ﬁl-l ]
The formulae for the bounds of spectra of matrices M A®, k=12,..., p are determined as
follows. Since M = B® then by Theorem 4.2

P A" <[, A]. G2
where a, =1, f, =5 . For some k 22, suppose
pM*" AN e ley Bia) (56)
where 0 <@, _, < f5;_, . From the theory of Chebyshev iterative methods (see [10], for instance), we have
oM B -2+ ], (57
where
(E}] = 2@:-] . c"'_l C =£“:L, 58
Vi1 l+qff. » ey ey 1 » Cpy 2, (5.8)
Then, proceeding from the equality

M‘"-’A‘" X (Mun"sm}(ﬁln-lAm)
and using (5.7) and (4.12) we conclude that

spM " 4 [, 8,]. (59)
where
a, ==y, B =50+r"). (5.10)
Thus, the sequence of matrices ;
M"“.M"’_...,M"’IM (5”}

has been constructed. The matrix M is considered as a multigrid preconditioner for the matrix A from
(3.2) (see also (5.1)).
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Above we introduced the quantities

P =:—'. k=12,....p (5.12)
a

into cur consideration (see (5.3)). According to (5.9), these quantities are the upper bounds for the
spectral condition number of the matrices M A", that is

MY AN <e, . k=12,...p. (5.13)
As follows from (5.5), (5.8) and (5.10), these quantities can be obtained by recurrent procedure
=5,
2
qz_{( s +1) +( g,_,—l)'] T (5.14)
An analysis carried out in [3] shows that if the condition
s'>5 (5.15)
is met then the equaltion
o = 2
rod GEE +(x-1y &l
(]x +1) —(Jx -1

has a unique positive root ¢.. Moreover, ¢. >5. The latter means that the sequence of quantities
¢, k=12,..., p defined in (5.12) increases monotonically and is bounded from above under unlimited
growth of g, that is
€, <Cy <<, <G, . (5.17)

According to the condition (5.15), we may take only the values 52 3. On the other hand, the
more is the integer 5 the more value of arithmetical operations we need to to solve a system with
preconditioner M . On the bese of detailed analysis carried out below, we come at the following
conclusion. In order to the number of arithmetical operations required for solving a system with matrix
M be proportional to 2 (i.e., the dimension of the finest grid system (3.2)), we must take 5 < 3.

Thus, 5 = 3. In this case the recurrent procedure (5.14) takes the following form

cl bt s »
2
¢, +3 (5.18)
o= Sc,_,[ﬁ] k=230
The quantity ¢. from (5.17) is determined as the positive root of the equation
x+3Y
=5 .
& 3x+lJ
Calculating, we find
c.=3+2/5<748. (5.19)

So, we arrive al the following assertion.
Theorem 5.1. [f 5 =23, then the estimate

KM~ 4)<3+245 (5.20)
Jor the speciral condition mumber of matrix M ™' A is valid.

In an iterative method with the matrix M as a multigrid preconditioner, we need to solve linear

systems with matrices M """, Far the lime being, suppose that s is a positive integer.
Consider a linear system
MBy=g, (521)
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where
y= " . s":[gl]; "..S-EG:"- i=12.
Vs 4}
o e, e o by o bk s, (53) o e mat: M2, s find the Silowig
algorithm.
Procedure MG PRECM™
1. calculate 3
2, =28, - AVBY 8 (522
2. solve the system
R% v, =12,; (523)
for zgksp;ﬁrdinsl.hcwlmiundfﬂnsymn(s.ﬂ)isequiva]mtmperﬁ)rming s steps of
the Chebyshev iterative process
=1
oW ey a2,
7l (5.24)
W=0 ; »=v"
for k=1 the system
A“”v, = (525)
is solved;
3. calculate :
v, = BY (g, — AY'). (5.26)
end

Let us give some comments to our Procedure MG PREC/M™. Remind that the matrix Bj}’ is
non-singular diagonal matrix. Thereby, the inversion of the block B in (5.22) and (5.26) presents no
difficulties. Then, the system of grid equations (5.25) on the coarsest level is assumed to be solved by a
direct method requiring O(1) arithmetical operations (since the system (5.25) has low dimension).

In conclusion, let us estimate the computational complexity of a preconditioning step. Let A, be
the number of arithmetical operations required for solving a system with matrix M (so-called the
arithmetical cost of the preconditioner M ). Insert the following notation:

A_‘"’_‘ — the number of arithmetical operations required fcr solving a system (5.21) with the matrix
M®  k=12,..,p (inaccordance with notation (5.11), 45} = 4,,.);

A:f _ the number of arithmetical operations required for solving a system (5.25) with the matrix
A (we suppose that AL} = O(1)).

Basing on the Procedure MG PREC/M™, by direct calculations we find the upper bounds for the
quantities A%, that is

AR <6n, +(T+165)n, , +54,",  25k<p, (527)

AL <6n,+Tny+ AL, (5.28)
In Lemma 2.1 we have estimated the relationship between the quantities 7, and 71, , . Using the left-
hand side of double-sided inequality (2.2}, from (5.27) and (5.28) we obtain estimates

AR s(%&-“]n‘ +sAy", 2sksp, (5.29)
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Al s ? n o+ AL, . (530
Consecutive using the recurrent relations (5.29) yields
AL s(¥+ 43)[», SN, At .r’-"nl]*s"'d."’; .
Then, having the inequality (5.30), we get
Al s (% +4:J[n’ +sn,., +‘--+.r""n,]+ s7AD.
Let us apply once more the left-hand side of double-sided inequality (2.2). We obtain

o R O )l R
1§05 )

be bounded from above, under unlimited growth of p, we must take 5 < 3. In this case

(31 ]
7"'43

1 10
AV < = n,+8"' AL .

In order to the sum

For 5 =23 (see (5.15)) we obtain the estimate
AL <T9n, +37 4D (531
Above, when proving Lemma 2.1, we used the expressions (2.3) for the quantities », . Particularly,
o o33, 42
£ 2
Since d,=2'd, (see (2.1)), we have
_ di2¥-3d,2" +2
PRI S T
We assumed that d, 24 (see the proof of Lemma 2.1). Consequently, n, 2 8-2% —6-2" +1.
It can be readily seen that 8:2%% —6-27 +1221.37"

for p21.Thus, n, 221-3"".
Taking into account the last inequality, from (5.31) we obtain the estimate

AR < [?9+ %A,‘;‘Jn, .

or
A 5(794-21—1,42);. (532)

(remind, that A.';' = Ay i, =0).

Thus, the multigrid preconditioner constructed can be considered to belong to the class of optimal
preconditioners, since it is spectrally equivalent to the initial stiffness matrix and its arithmetical cost is
proportional to the dimension of finest-grid problem.
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6. Conclusions

In this paper we have shown that AM/S-method allows to construct efficient preconditioners for elliptic
mesh operators. Two points of the paper should be emphasized. The first point is the estimate (5 20) for
the condition number of preconditioned stiffness matrix. The second one is the estimate (5.31) of the
arithmetical cost of the multigrid preconditioner (see also (5.32)). In subsequent papers we will construct
AM/S-preconditioners for different rates of mesh refinement and compare the results with those of the
present paper.
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