Mathematical Problems of Computer Science 33, 196—200, 2010.

Developing Game Model for Migration Process of Static Timing

Analysis Tools

Tigran Sargsyan
State Engerineering University of Armenia
e-mail; sartig] 7(@yahoo.com

Abstract
. The aim of the work is to find an adequate game model for Static Timing
Analysis (STA) . migration process and develop method for evaluating the
efficiency of actions on each step of migration. For comparing timing models
by STA tool an automated comparison utility was created which should
be used for finding the best strategy in each cycle of migration process

1. Introduction

Static Timing Analysis (STA) is a method of computing the expected timing of a digital circuit without
requiring simulation. Figure 1 represents the input and output of STA tool. It is needed to mention that
this diagram is a simplified model of STA tool.

The input of STA tool are device SPICE models, circuit netlist in SPICE or Verilog format, circuit
parasitic in DSPF or SPEF format and configuration data.

The output of STA is a timing model of analysed circuit, which is often called “.lib".It contains
information on latch setup and hold, clock-gating setup and hold, minimum pulse width, domino
precharge, and user-specified checking.

Lets discuss the migration from oné STA tool to another. In this process Design Data remai hanged

only Configuration data is being modified. o R :
STA tool can be represented as a black-box model with Design Data and Configuration data inputs and
the .lib{timing model) output. Modification of Configuration data affects the output data.(Figure 2)

From this point of view the the migration objective would be implemented if the structure of generated
,lib(“!'m_gmte to” toel} matches the structure of reference .1ib(“migrate from™ tool). Statistics shows that
the timing mouels(.Jibs) generated for the same circuit, using wifferent STA tools with sufficient

om_figumtion do not match

misgmdilsl(SPICE)
. > Static timing analysis tool Jlib
Parasitic data for ﬂr >
i e

Circuit netlist(SPICE

T

Configuration data
Figure 1 Data Files used in STA tools

196

T. Sargsyan 197

completely, the average matching is 80%, Even in this case generated libs represent adequue tming
model of circuit being analized

Conl'lun:ien data

e e s WU L

Design data

! Generated model

HE T i
(“5’5?@?§)

Figure 2 Cicle of Migration process by using black-box model for STA tool

Method

The process migration can be represented as a combinatorial game tree model.
The game tree consists of H, T nodes (or vertices), which are points at which players

can take actions, connected by edges, which represent the actions that may be taken at that node.

Ezch H node represents the state at which the engineer(person performing migration) can take action, and
T node represents the state at which STA black-box can run. Each transition from T to H is equivalent to
transition of STA black-box output data to ‘model comparison tool’, and transition of “difference report’
to Engineer. Each transition from H to T is equal to run of STA black-box with *configuration data’
updated by engineer. An initial (or root) node represents the first decision to be made(by engineer). Every
set of edges from the first node through the tree eventually arrives at a terminal H node, representing an
end 10 the game. Each H node is labeled with the payoffs(P0... Pn) eamed by engineer if the game ends at
that node. The payofT value is the number of mismatches between timing model generated at current cycle
of migration and the reference timing model, the aim of the game is to reduce this value to minimum. The
calculation of payofT is beign calculated by *model commaprison tool’.

Figure 3 Game tree model for STA

198 Developing Game Model for Migration Process of Static Timing Analysis Tools

lib Timing Model Comparison Tools

isting solutions for .lib comparing problems are) 5
TTT'::: stmp“im utiliies such &8s diff, omp, tkdiffi, Kompare etc.

2. *versus’ scripts which produce comparison between multiple data formats(Verilog, Library

Exchange Ji :
The first ;;enﬁ'ﬂﬁkn :::,n not provide reasonable comparison accuracy. When libs are generated with
different configuration of STA tool, blocks which contain timing information may be disposed diversely
and may have different timing attributes. The only exact diagnose that text comparison utilities can make
isi files are equal or no. h :
:::;uh:: l‘?:rsm‘ LooL:qdo not provide detailed comparison betwgen twg_.l:bs. only comparison of ports,
and port directions. So it is needed develop an automated comparison utility for comparing timing models
generated in each step of migration, and calculating payoff for qa!:h step.If a deep{ comparison
then the list of mismatches generated by omparing utility can be used for planning the
upcoming strategies. In this term strategy means the action to be taken(update in Configuration data)
for fixing the mismatches between generated timing model and reference timing model in next run if STA
tool.
1. Split input and Reference into blocks which contain only one . ;
« PORT_START(*)...PORT_END* statement and place them to respectively @in_port_blocks to
@ref_port_blocks .
Remove line carry symbols from elements of @in ,_port_blocks, @ref_port_blocks.
2. Each element @in_port blocks is being passed to function Dissolve_port block as an input
argument. Empty hash array %in_hash is being created.

Function Dissolve_port_block :
This function accepts a string as an input argument. Input string must contain only one
“ORT_START(*)..PORT_END" statement. Dissolve_port_block creates an associative array with the
following keys{table 1).
After creating all needed %port_inf entries Dissolve_port_block returns %port_inf hash array and stops
working.
Returned hash array is being merged with %in_hash.
3. Same as in step 3. Retumned hash array is being merged with %ref_hash.
4. For each key of %ref_hash check if key exists in %in_hash
In case if key was found in both hash array calculate the difference between key values from
9%ref_hash and %in_hash and delete these entries fromboth hash arrays.
If key is not found in %in_hash report a mismatch and print a mismatch repnrt to output report
file.
5. Adda“from reference file” tag to all values of %ref_hash
Add a “from input file™ tag to all values of %in_hash.
Create empty hash array % unmatched_hash and add %ref_hash , %in_hash to this hash.
6. Sort keys of %unmatched_hash starting from the highest priority mismatches.
7. Print the list of unmatched keys to output report and exit.

T. Sargsyan

REE™ processing of Input file,
Reference file
(2]

3 p— p{ in_hash (Assol:iaEve array)
Dissolve_port_block (Input file)]._ akd
¥ —-—p{ ref_hash (Associative array) i

@l Dissolve_port_block (Ref. file) LS

For keys of Pin_hash_ref (Skey is
the carrent kev)

(5] Add tags to in_hash and
ref_hash.
Unite in unmatched_hash

v

Skey found in
Pin_hash_in keys

8 Sort unmatched_hash keys by
highest priority mismatched
1

Calculate difference and
print resulls to output

;-g_"__ —

P M e

-ﬂlund- S;i'-n:;;ﬁ_llpruh- for Jib com

[

| inv_out==timing=>logic

Keys of %port_infl Values of %eport_inf

INV_out==cap 0.17

| inv_out==dir Out

inv_out="timing=>star inv_in

inv_oul=>timing==>type combinational
inverse

| inv_out=>timing=>inv_in=>combinational=>inverse=>rise_dl

0.1212, 0.2343, 0.3432, 0.4432

0.2432, 0.3453, 0.3785, 0.8762

| inv_out=>liming=>inv_in=>combinational=>inverse=>fall dI
Inv_out==timing=>inv_in=>combinational=>inverse=>tise_Ir

0.0800, 0.0861, 0.0867, 0.0876

inv_oul=-liming=>inv_in=>combinational=>inverse=>rise_tr

0.0800, 0.0861, 0.0867, 0.0876

Table 1 The syntax of keys in associative array

Conclusion &

The developed method was tested for migration process from Pathmill to NanoTime.
Migration was performed for ISCASB5 C432, C880, C2670 combinationa!l circuits.

Migration was done

1. Using TkduT for comparing libs.

2. New lib comparison tool, with best strategy planning (RED)
The maximal matching between compared libs was 71%.

Test results are presented in table 2

Model for Migration Process of Static Timing Analysis Tools

200 Developing Game
Circuil | Migration time (minutes) Number of iterations
ope [Tkdifr New Jlib comp. Tkdiff New .lib comp.
C432 165 112.5 23 14
C880 575 411 29 16
C2670 2460 1720 40 21
Table 2

Migration isbeingpe:fomdeBy?'l o4, faster when “New .lib comp” is used.

Acknowledgements

I would Tike to express my gratitude to Professor Edward Pogossian for supervision of the work,
constructive comments and support.

References

N

J. Bhasker and R. Chadha «Static Timing Analysis for Nanometer Designs»

Janet Shepiro «Strategic Planning Toolkit» htp:/waw.civicus.org

E. Pogossian, Adaptation of Combinatorial Algorithms, (in Russian), Yerevan., pp. 293, 1983

E_ Pogssian: “Combinatoriel Game Models For Security Systems”, NATO ARW on “Security
' and Embedded Systems", Porto Rio, Patras, Greece, Aug,, pp. 8-18, 2005.

E. Pogossian, “On measures of performance of functions of human mind”, 6th International

so.lp'mn;c ug; Computer Science and Information Technologies, CSIT2007, pp. 149-154,

‘erevan, :

Uunwwnhy dwdwGwlwihb Jepmompywi qopdhpitph dhgnughwih

wpngbup fuwmu;hG dngbth Szulnud
S. Umpqujuh
Withnthnud

Wy wphswwnwiph Guuunolibpl b6 Unwnohl dwiiwtwljughl Lbhpmompywb gnpdhplbph

dhgpwghwjh wnngbuh wnbljjunn danbjh unb
nomuip L dhgpughwh oy G,
::nn:mplLllma gnpdmnmpyniiGhph mpmn:ﬁ_l.m[hmmmwll giwhwwndwi dgpnr:h ;‘:unql:ui‘::m -y
e ;I;l::l: l::n(lj:::ht:ﬁu;ll;:hjgﬂ ltnhth_ihph(hherty Jnpiwnm|) hwdbdwinnpjwb ﬁ‘[llilqptl:l:[hﬁ qnpdhp
pughwjh jnpupwl i i i
o i hw?flij; Jupwpwlynip thaynud hpudwGibph Gungpuiwd pudwgnyG

