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Abstract

The statistical features for the optimized matrix generator of pseudorandom num-
bers are studied. The x? and Kolmogorov-Smirnov tests are applied for very long
sequences of the tested pseudorandom numbers.

1 Introduction

One of the most important tasks nowadays is the numerical experiments on super computers
with the help of modeling of the sophisticated physics system. The Monte Carlo method is
used for solving the problems where the high dimensional integration is involved.

To use the Monte Carlo method for analysis of the high energy physics experimental
and theoretical problems we have to solve the problem of the quality of the pseudo-random
generators, which should have a strong statistical feature, which include a larger period of
sequences and a good speed of generating of pseudo-random numbers. The most popular
and usable pseudorandom number generators used before have the period 10°. This period is
not enough for solving the integration problem, so we need a super long dimensional period.

The matrix generator based on solid theoretical ground (1] will be adapted to the super-
computer with the usage of the parallel arithmetic which in its turn implements the paralle!
programming libraries (MPI). The usage of the parallel arithmetic provides more generation
speed. And it simultaneously provides generation of arbitrarily long pseudo-random vectors.

In the previous work on this pseudo-random generator (3] there were used some statis-
tical tests and were given some analyses, but in this work a larger period of sequences is
investigated and initial values of the vector and matrix are optimized.

2 The Purpose of this Work

The matrix generator initially proposed in [1] is based on solid theoretical ground, which
is the Kolmogorov's dynamical K-systems, and has very strong statistical features, as well
as super long period [4]. The only disadvantage. which has limited the wide use of such a
generator, is relatively slow time of random vectors generation. It is required to build the
parallel version of matrix generator which will be much faster than the old version, realized
in scalar arithmetic.
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he matrix generator. which consists of

At first it is needed to make the optimization of t r ich
the choice f::r the matrix constant and initial vector, to provide the best statistical features

as well as long period of random sequences. i
checked the statistical features of the optimized matrix generator

have
for I:gﬁ :::;s?u To perform the check of statistical fea&ures for the sequence of
generated numbers we used the x* and the discrepancy Dy criteria (2.

In the future work we are going to perform also the Spectral criterion (one of the most
powerful statistical criteria (2]). On final stage the matrix generator in parallel version should
be tested on the super-cluster and its time characteristics is expected to be compatible with
those of the standard random number generator (e. g rand() - C ++ random number
generator).

Let us describe shortly the algorithm of the matrix generator performance. Any n di-
mensional random vector is obtained by help of product of the n x n dimensional matrix by
initial n dimensional vector. The recursive procedure consists of the input initial vector and
the output in every step is the vector which will be the input vector for the next step, the
metrix is initialized once.

Since the main calculation operation is the multiplying of every column of the matrix with
the vector, to optimize the efficiency of calculation one can use the special matrix form with
some zero elements. To provide a good approach an initial vector with researched (tested)
values is initialized. After some tests we found that generator is stable for changes of initial
matrix values, e.g changing ¢ = 3141592 to ¢ = 1000001 (see the matrix representation).

3 The Matrix Generator Description

The main idea, on which the matrix generator is based, is as follows: the pseudorandom series
Py is represented by the trajectory of certain unstable dynamical system, whose phase space
is a IT — hypercube in the space of dimension d. The system must be maximum unstable,
for the trajectory to fill this hypercube II¢ uniformly. As it is well known, those are the
Kolmogorov’s K-systems.

For generating pseudo-random numbers it was proposed to use the authomorphysmes of
compact commutative groups, which are defined by the integer matrix A = [ja;;|| . Py =
APy_1 mod 1, (1) where P is the d dimensional vector, belonging to I1? (hypercube in the
space of dimension d), P; = (X{?, X3?...X") and detA = =1 (2). In order to preserve phase
space volume II¢ and ensure the automorphism (1) to be the K-system, all its eigenvalues
must satisfy the condition: |Ak| # 1,k = 1,...,d (3). Thus, the problem of the pseudorandom
sequence {Py} construction reduces to the construction of the matrix A which satisfies the
conditions (1), (2) and (3). Py = {A{A...{APb}}...} (4). the points Py, P,. ..., Py form the
very trajectory in the hypercube IT%.

; In order to check the statistical features of the sequence (4) we have to calculate x? and the
qu Dy which determine the convergence of the Monte-Carlo sums. Corresponding
to the given initial matrix a vector which size is equal to the size of the matrix is generated

The great advantage of the matrix erator is the ibili change widely .
components of the initial vector P = (Jﬁlg]n. x;"’...xj"’) m'g;: Also in t;tiel) 5
vector of random numbers are generated. i vifhes |

In our researches we use Lhe constants: Py = {1/v/3.1/+/5, 1/V7.1/V11}. (5) for vector
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initialization, y =t + 3,7 = 0,4, ..d, t = 3141592

t+y t4+y+1 0
t+y—1 t+y 0

Ag = t+y t+y+1 anailig

0 0 t4+y—1 1+y
()
or for & more generalized version of this matrix:

t+y t4+y+1 0
t+y—-1 t+y 0

R t+y+i  t+y+i+l

0 0 t+y+i-1 t+ity
()

for matrix initialization.

3.1 Other Types of the Random Number Generators

There are several types of the random number generators: linear congruent, Fibonacci,

multiplicative ete.
Xns1 = (aXp +c) mod m,n =0, (6)

() called a linear congruent sequence, where
m - the modulus m > 0, a - the multiplier 0 < a < m,
¢ - the increment 0 < ¢ < m, Xo- the starting value 0 < X < m.

A further problem of LCGs is that the lower-order bits of the generated sequence have a
far shorter period than the sequence as a whole if m is set to a power of 2. In general, the
nth least significant digit in the base b representation of the output sequence, where b* = m
for some integer k, repeats with at most period b".

4 Statistical Tests

In & random sequence one can expect that each of the ten decimal digits to occur approxi-
mately 1/10 times. Should the radix be 2 (digits of either 0 or 1), each digit should represent
approximately 50% of the sequence.

Testing involves differentiating good sources from poor choices. For example, the binary
stream ...1111111110000000000... would perform ideally with a simple Frequency test, but
fail at advanced tests such as Runs, Longest Runs in a Block, and Cumulative Sums. A
counter intuitive point with the presented binary stream is that it is a valid sequence of
random numbers, Each stream is as equally likely to occur as any other in an unbiased
generator.

Below there are some various tests which should be used when evaluating the effectiveness
of a generator.

1. x?* - Classic Definition

2. Kolmogorov-Smirnov - Extends the ¥ test to the set of Real Numbers

3. Gap - delect gaps between a number over a range of numbers in a sequence



138 Studies of the Matrix Generator Statistical Features
4. Poker (Partition) - n groups of five successive integers from the stream, observing the

resulti tern. One pair is aabed, full house is aaabb. etc. :
5. Coupol;g (g::lactor‘s - Examines the length of the sequence required to observe all

numbers in the set 0 to d — 1. i 1.
6. Permutation - number of orderings of grouping the sequence into partitions
7. Collision - Used when the x? test exceeds a certain number of collisions
8. Birthday Spacing - Similar to the Birthday Paradox when selecting two integers in the

The m‘ﬁ'ﬂ determines the hyper-plane separation in congruent generators. To perform
he full period of the generator using the actual

it the test appliasnl"‘ourlera.ua.lysis to t :
generator equations. Thiatypeoftastism{enedtoaaat.heowtmalmmdisgenemlly
applicable only to a single class of generators. ‘While theoretical in nature, considerable
computation is required for any particular parameterization of the generator and is practical
only with computer algorithms to complete the calculations.

Another theoretical test applicable to lattice structure generators is the discrepancy test

due to Niederreiter. These tests look for the maximum discrepancy from expected counts
over sequences of s-dimensional sub regions of the unit hypercube.
In our testing process we used only 32 and Kolmogorov-Smirnov tests.

41 x? Test .
Thex’mtisperhapathebestknmofaﬂstaﬁsﬁcalm.mldit.isabaaicmeahodt.ha.t
is used in connection with many other tests. The x? test is used to test if a sample of data
comes from a population with a specific distribution.

An attractive feature of the x* goodness-of-fit test is that it can be applied to any
univariate distribution for which you can calculate the cumulative distribution function.
The x? goodness-of-fit test is applied to binned data (i.e., data put into classes). This is
actually not a restriction since for non-binned data you can simply calculate a histogram or
frequency table before generating the x? test. However, the values of the X° test statistic
are dependent on how the data is binned. Another disadvantage of the X test is that it
requires a sufficient sample size in order the x? approximation be valid.

The ¥? test is an alternative to the Anderson-Darling and Kolmogorov-Smirnov goodness-
of-fit tests. The x* goodness-of-fit test. can be applied to discrete distributions such as
the binomial and the Poisson. The Kolmogorov-Smirnov and Anderson-Darling tests are
restricted to continuous distributions.

( Thismteat is um;tive to the choice of bins. There is no optimal choice for the bin width
since the optimal bin width depends on the distribution). Most reasonable choi
produce similar, but not identical, results. T
The test statistic follows, approximately, a x? distribution with (k - ¢) d
. s - ¢) degrees of freedom
where k is the number of non-empty cells and c is the number i eters
the distribution + 1. . e fie

Suppose that every observation can fall into one of k categories. We take n i

: : . n independ
observations; this means that the outcome of one observation has absolutely no eﬁecte:l:
the outcome u‘i; alx:y ;f g tt]:]thers. Let p, be the probability that each observation falls into

ry s, and let ¥, i i
cntegowe H s e number of cbservations that actually do fall into category s.
= 2
V= (Y. —np,)
lsz..:g np,
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the number of degree of freedom is dof = k — 1. one less than the number of categories.
then the value of the reduced x? is defined as: x® = V/dof. This description given above
is for one dimensional x?. For two dimensional x? the formula is the same but the dof and
the statisites V is counted in the [ollowing way:

bf === =)

icigse TPy

where p,, is the probability that each observation falls into category {i, j}, and Yj; is the
number of observations that actually do fall into category {i, j}.
One can see that it is easy to make the generalization of the mentioned above x? defini-

tions for any dimension of space.

4.2 SpecialTests of Matrix Generator in Tespect of Stability.

S0 far we have investigated the features of pseudo-random numbers given by matrix generator
with size 4 « 4 in respect of possible dependence of 4 component vector combinations used to
test the two dimensional x? criterion. To perform this check we used all possible combinations
(i.e.C? = 6) of 4 component vectors, the results of this test is shown on Figure 1, one can
canclude that any of used combinations satisfied the statistical requirements, then we will
use one of them for further studies, i.e. the combination (0, 1), which means the first and
second components of 4-vector in case of two dimensional )? test.

Also possible influence of initial vector, as well as the constant into the matrix generator
on statistical features of generated numbers was investigated. We checked that change of
matrix constant is not essential, but the change of initial vector leads to essential increasing of

x*/daf values. Based on performed tests one can conclude that the initial vector components
should be similar to finite representation of irrational numbers,

Also to compare the empirical x? distribution with the theoretical one, the following very
interesting data have been calculated: it was counted 100 of x? tests continuously for 4 x 4
matrixes with Ny = 10° and for 4 dimensions.

4.3 The Kolmogorov — Smirnov Test

A test for goodness of fit usually involves examining a random sample from some unknown
distribution in order to test the null hypothesis that the unknown distribution function is in
fact a known, specified function.

We usually use the Kolmogorov-Smirnov test to check the normality assumption in anal-
ysis of variance.

A random sample z;, z3, ... Z, is drawn from some population and is compared with F(z)
in some way to see if it is reasonable to say that F(z) is the true distribution function of the
random sample.

One logical way of comparing the random sample with F(z) is by means of the empirical
distribution function S(z). The data consist of a random sample z;.z;.....z, of size n
associated with some unknown distribution function, denoted by F(z).

Let S(z) be the empirical distribution function based on the random sample z;. 3, .... Zy.
F(z) be a completely specified hypothesized distribution function and the test statistic T
be the greatest (denoted by sup for supermom) vertical distance between S(z) and F(z). In
symbols we say T' = sup |F(z) — S(z)|
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For a higher dimensional test we used another way for counting the Kolmogorov-
Smirnov's formula:

n [ |
- Yop)/ et — i+ 1) + Db
dn MZ_Imgx (EE ew) [ totar — (i + 1) (i + 1)

umber of observations that actually do fall into category {i,j}, muua is
ons, n is the matrix size and h is the bin (1/n). And for more
ge only the part of sum and multiplication.

where Yj; is the n

the count of all observati

dimensional test in formula we should chan
Theﬁmlformulamedforthiutestis:

KS = dny/Miotal

5 Results

5.1 x? Test
For the test results we used two matrixes with 4x4 and 8x8 sizes, and tested it from one
to four dimensional tests; Also we gave the total number of observations from 1000 to 10°.
Below some of the results for both matrixes are Jisted.

Two dimensional x?test with the 4x4 matrix: Nyt = 10°, x* = 1.07174

Two dimensional 2 test with 8x8 matrix Nixa = 108,37 = 0.787535

The results we obtained are compared with the results given by rand() (C++
standard random number generator). In cases when the size of used random se-
quences is not so big the rand() gave the same results (not equal values, but
the equal meaning), but for large used statistics our generator is more stable.
The test results are expected to be in range near to unity. In Figure 2 it
is showen that more than 90% of the results are closely to the expected unity.

i Déagram 2 X2 tesd for dxd matrix
14 J
121- Fanl 258
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;‘l..g_'\ 4 \
g 1——-*--_._.‘.:-."_“-_&.“__,_ D
508r ey
%
osf [~ — :
-+ @21dm .
-+ @2dm .
04f |- 0-x23 dm %
v 324 dm .
02 . : A ; :
0 1 F] 3 1 5 :
log,pfMtotal) - 3
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5.2 x* test for Rand() C++ Random Number Generator

Diagram 3 shows the value of the x? for rand() C++ standard random number generator for
42 bit architecture. As we can see the value of ¥ starts to grow very fast from myp = 10°.
So it shows that the period of the rand() is no more than nyg = 10°, For 64 bit architecture
this precision us twice more. As it is shown in Figure 5 even in nya = 10'° the value of x?

is not more than 1.
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5.3 Kolmogorov — Smirnov Test
To test the Kolmogorov-Smirnov criterion we again used two matrixes with 4x4 and 8x8
sim,audtmtedit&omonewfourdimmﬁmalm

For matrix with size 4x4, N = 10°, ks_1 dim = 0.333873

For matrix with size 8x8. N = 108. ks_.4dim = 1.1615

o mren
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6 Conclusion

The matrix generator was optimized by help of i i

The varying the matrix constant and also
initial vector. The results of performed statistical test check the features o?r:he mattr}'::



S. Hovasspyan 143

generator with very long sequences of pseudorandom numbers (vectors), allow to state that
matrix generator has a very strong statistical abilities in respect to the uniformity and
randomness of the generated numbers. At the same time the matrix generator has a very
lung period, which is essential to study the super high dimensional physics problems.

The authors are going to investigate also the statistical features of the optimized matrix
generator using the most powerful test, which is the spectral test. On the final stage the
matrix generator will be modified in parallel version to be installed on super-cluster. In
this case the expected essential reducing of the generation time, will allow to use the matrix
generator for the complicated multi-dimensional physics problems solving.
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