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Abstract
Thepmpagaﬁmofelacmmsneﬁcwammmumismnﬁdemdtakmgmtnm-

tons in vacuum. Itlspmwdthatinordertomlab'obaarwdfncta,mlmbsm
etc, the vh-tualphowmahnuldbequmimd in nonperturbed vacuum. For a model
ofthammhmonicquantumﬁdlh:qr.thsthmdmdbutimdphmu
obtained precisely. Ithm,mtthequmﬁmdﬁrtuﬂphowmhaﬂnsmyﬁvem-
ergies, in toto (& i b-sspueent)mmndmmdontheanmlemlahwlute
value of which is minimal. Itiapmvodtha.ttheezf.en.sionomeﬂelmdym.
iuwithlndunlnnofmuumqumtumﬁaldﬂuct\mtimmwbemmctedonﬁD
space-time continuum with 2D compactified subspace. The problem of propagation of
mﬁoustypeselechomnsnuﬁcmvuinmmlalnmﬁpted. Their influence on the
refraction index of vacuum is studied.

1. Introductién

ltisubviountha.tinthenwmfuhmalladmcadtechnologiaﬁinoneorutherwillbe
connected with quantum physics, with all of its seeming absurdities. '
Althoughthemdudappmachmoftheqummmmeuhaniesmdqmmmelectmdy.
namics (QED) describe well many different quantum effects meeting in the nature, never-
theless often unsatisfied desire stay to interpret experiment not only statistically (especially
in a case of QED), but also to understand more deeply an essence of the quantum phenom-
ena occurring during a finite times, depending on concrete conditions of experiment. By all
appea.mnoeuonthemmvdiﬁcultqumﬁomwemrweiwmomdmmifwesﬁudy
the phenomens of vacuum quantum fluctuations more sequentially. Let's remind, that the
vacuum fuctuations though in the sum have large values of energy, their role in the nature
is insufficiently obvious because of their extremely uniform density. Nevertheless, there are
oe:r’r.a%n conditions at which the uniformity of the background electromagnetic zero-point en-
ergy is slightly disturbed and leads to physical effects. One is the slight perturbation of the
lines seen from transitions between atomic states known as the Lamb Shift [1]. Other phe-
nomenon, the unique attractive quantum force arising between closely-spaced metal plates
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is namerd Casimir Effect [2]. Also it is shown that an extract of electrical energy from the
varuum is possible at least in principle [3]. As is well-known, up to now all attempts to unite
gravity with the other forces (electromagnetic, strong and weak nuclear forces) in the limits
of unified theory haven’t led to success. To explain this problem some of researchers assume
thet gravitetion is not & fundemental interection, but rather & secondery or residusl effect
associated with other (non-gravitational) fields [4]. In particular, it has been assumed that
gravity might be an induced effect brought about by changes in the zero-peint energy of the
vacuum, due to the presence of mass.

it is important o note, that all of aforementioned effects and many others too, are
being received in the limits of some type of classical electrodynamics which is accepted to
call a stochastic electrodynamics (SED). Recall that SED is a term for a collection of many
different approaches where the fluctuations enter as one of the postulates on the homogeneous
boundary conditions of Maxwell’s equations [5, 6, 7, 8, 9, 10].

In this article a new representation is developed for investigation of dynamical and sta-
tistical properties of quantum vacuum under the influence of external electromagnetic field.
In contrast to the SED, in considered case the quantum vacuum fluctuations are being in-
troduced in the Maxwell's equations. In other words we postulates a system of stochastic
differential equations (SDE), later named Maxwell-Langevin SDEs. This radically changes
the logic of building theory and ellows finding the equation for quantum distribution of vac-
uum depending from the 2D equilibrium vacuum'’s coordinates, and parametrically from the
4D space-time coordinates. Finally, using the quantum distribution function the macroscopic
parameters, type of refraction indexes of vacuum are constructed.

2. Formulation of the problem. Stochastic equations of fields

As well-known, the system of Maxwell equations in empty space has a following kind:

18h, M r g
ET"‘MN_O' divhg =0,
%%-mm =0, diveo=0, )
where vectors eo(r, £) and hy(r,t) describes electrical and magnetic fields correspondingly.
Maxwell’s electrodynamics expansion, taking into account the quantum fluctuations of
vacuum, can be presented in particular by the following model of stochastic differential

equations (Maxwell-Langevin SDEs):
%% = 'l].(r,t) - rot.d, divh = gi(r: t)!
.E%:.'.l. = n4(r,t) + rot b, divd = pu(r, ¢t), (2)

where n,(r, £) and 14(r, t) the fluctuating fields are characterize the different type of processes
in 41) Minkowskii space-time (r,t), which are connected with the random changes of fields
and the charged currents, gy(r,t) and py(r,t) random densities of magnetic and electric
charges correspondingly.

For the free (without charged particles and fields) or nonperturbed vacuum, from Eq.s
(2) obviously may be found the following Langevin type SDEs:

% 87:;:! +10t0g =my(r,t),  div8, = gy(r,1),
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3 %OT‘ —rot@ =ny(rt),  dive= (1), ®

where 8, and 8 describes stochastic vacuum fields. Further we will discuss topological

various fields, as a scalar fields also and whirling fields.
The solutions of SDEs (2) in the case of presence of external electromagnetic field it is
useful to represent in the following kinds:
b(r.t: {&}) = ha(r, £)[1 + &fr. 1)), d(r,t: {&}) = enlr, £)[1 + £4(r, 1)), (4)

where &(r, t) and &(r, t) are stochastic topologically scalar fields.
Substituting (4) into (2) with taking into account (1) we can find the following system

of SDE:

%%_t& = (& — &) rot eg — Véa x g + my(r, 1),

%2‘% = (&—&)I‘Otho-]'v& X hofﬂa(rﬂ).

ho- V& = a(r, L),

e - V= 04(r,1). (5)
Now multiplying the first equation in (5) on the field, ho and correspondingly the second
one on the field, ey we can receive:

%E;i = Ay(r, 1) (& — &) + By(r, t}% + s (r, 2),

% = Ad(r, ) (& — &) + Bulr, t)% +77a(r, ), (6)
where (&, £4) € (—o0, +00) we will name the equilibrium vacuum'’s coordinates.
In Eq.s (6) the following notation are made:

Ax(e,1) = 7700 oteo) = SLLNRVIE (e rotho) = -
By(r,t) = é -holeo xn),  Balr,t) = —é - eg(hg x n). )

in addition:
bony = hom = (B3/c)h,  eomy = eoma = (€}/c)la,  m=r/r.
At projection of the first equation in (5) on the field, eg and correspondingly of the second
ona on the field, by, may be received the following SDEs:
ofeo x )3t = —eomy(r, 1), Balho X )22 = o, (s, 1). ®)

From equations (8) in particular follows, that when €o || n the random field, n,(r, ) L
(or along a hy is directed) and correspondingly when s y (T €
74(r;t)) L by (or along a ey is directed). y:when ba | nfn chis case the:riadam field,
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The third end fourth equations in (5) correspondingly may be transformed end written
in the following kinds:

(ho ¥ n}% - ﬁ(rr t}: {h * nJ% i Ed{l‘, t). {9}
The equations (9) may be represented in the kind:
% = Cl-fl'- t.}' Csfh t) = %ﬁ?‘:
1
et G- el (10)

where G(r,t) and (y(r,t) it can be interpreted as fluctuating fields of free vacuum, or in
other words the mentioned fields do not depend on an external field,
Now taking into account Eq.s (10) the system of equations (6) we can write in the kind:

% = Ay, 1) (& — £2) + filr, 1),
T = i) 6 60+ 1,1, (1)
where the following notations are made:
1x,8) = lr, 1) + 7 - ealbo x 1) 6(x, 1),
Jae,t) = (e, ) + 37 Boleo X 1) (e, ). (12)

Related with the stochastic fields, for simplicity we will supposes that they satisfy to following
conditions of correlation:

(fa(r, 1)) =0,  (fzlr,t) fo(r',t)) = 2e.6(r — )é(t — 1),
(Gnt) =0,  (Glr,t) G, ) = 20.6(r — r')d(t - 1'). (13)

The diffusion constants e, oz where z = b,d, characterize the power of fluctuations in
the free or nonperturbed vacuum. Specifically for & quantum noise coming from vacuum
fluctuations we understand a stationary Wiener-type source with noise intensity proportional
to a "vacuum power” which we write as P =}A(w?) and with mean energy ¢ = i/ (w?).
Recall that /i is the Planck's constant and (w?) is the variance of the field frequencies averaged
over some appropriate distribution (we assume (w) = 0 since w and —w must be considered
8s independent fluctuations). Note that calculation of (w?) for quantum fluctuations is not
Urivial because vacuuwn energy deosily divenges us w® with (sssumed) uniform probability
distribution denying a simple averaging process unless a physical cutoff at high frequencies
exist [2]. :

Now the important problem consists in receiving the equation for function of distribution
of joint probability:

Plén&aimt) = (860 - ) 36(t) ~ )] e o c0ocst0y
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Using the system of SDEs (12) it is simple to find [11):
% = {Eﬁae +E¢@- = Ab(r:t)"_(& &J Ad(rtt)_(& Ed)} (14)

Later we will use probability of distribution normalized on unit, which supposes:

P(&r&i r, t) — C(rl t)P(&:& h rlt)l C——l(r‘ t) ! f‘fp(fh &a; r.t)d&d{d.

Now we can calculate the average values of magnetic and electric fields with taking into
account the screening effect of quantum vacuum:

bo(r,t) = Hracl, ) o(r, ), dolr,E) = Evac(r, ¥) €a(r, ), (15)
where the following designations are made:
xolr,d) = [ [x(e,t: {6DP@Gainiledes,  x=bid, Xo=bo,do,
in addition: -
Phoac(r; ) = 1+ff&P(&,€«:r.t)d&d&,
Eoac(r,t) =1+ f f EaP (&, Ea; x, t)dbsda. ; (16)
Thus, we received expressions for the vacuum’s refraction indexes €yae(r, t) a0d fivac(r, t)
at presence of external electromagnetic field.
3. The statistical properties of nonperturbed quantum vacuum

The equation for quantum distribution at the absence of an external fields, when the vacuum
is nonperturbed, may be found from the Eq. (14) easily:

gp_{!} = {“"EEE &8&} ' a7

where PUY)(&;, £4; ) describes the distribution function in the free quantum vacuum.
Later we will suppose that along the both coordinates & and &g, the diffusion constants are

equal & = g4 =€
THe general solution of Eq. (17) may be found easily, it has the following form:

e M T B PR
where the distribution function PUY)(£;, £,;t) satisfies to the initial condition:
PO, Eait)|_ = Pl )y (19)
which is defined on a two-dimensional space (&, £2).
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Note that the type of this space may be specified correspondingly efter the definition of
physical vacuum’s state,
Now using (16), and (18) we can calculate vacuum’s refraction indexcs:

thae =1+ [ [ 6P0w0)dY e =1+ [ [ 8,06, 88,05,, (20)
where the probability distribution satisfies to the normalization condition:
[ [ Pnbd88,= 1.

At the case when electromagnetic wave in vacuum propagates without resistance or when
external field is absent obviously takes place equality:

[ [ 6P e cait) desda = [ [ 6P 6 451) desds = 0, (21)

whence foliows, that the refraclion indexes of free vacuum identically are equal to unit
Evac = fuac = 1.
We will discuss two diametrally different situation of nonperturbed vacuum:
#) when the virtual photons are not localized (fres), and
b) vice versa when virtual photons are localized.
In the case of &) the distribution function of non-localized virtual phot.ons in can be

written in the kind:
P&, €4) = 86 — D)5(64 — €9). (22)
For satisfying to & condition (22), it is necessary to put & = £ = 0. However in this
case average value of a square of frequency is equal to zero {w?) = 0 that contradicts the

observing data.
In the case of b) we will assume, that the distribution function is being described by
wavefunction of a inverted 2D quantum harmonic oscillator:

PO, &)= T PE),  BE) = WP, (23)
z=b,d :

where wavefunction 9(€;) satisfy Lo equation:
(£ o hoo -
Note that the equation (24) is being solved exactly:

i) = ()2 ) p( ) EEE), B = —yE/aem),  (25)

wheren=10,1,2..,.

As concerns of the eigenvalues E*) and E{?-they may be interpreted as a quantization
energies (in the units of A) resnactwaly of the virtual "electrical and "'mn.u'hn'rw" phatons
in nonperturbed quantum vacuum.

Because in considered case, vacuum is quantized, therefore the expression (23) deseribes
the partial distribution. The full quantum distribution function in nonperturbed vacuum
may be constructed by the [ollowing image:

PO, €)= Gy i'i_u ComPu(E)PrlEd),  Com = €~ (BntEn)/Be, (26)
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average energy of virtual photons in equilibrium state of vacuum, coef-
Seslipiin themimaf:nanical distribution which describes the occupation of quantum
. In (26) the constant Go may be found from the normalization condition

£

o Co’ e~ \2 1
G =0T T (27)
“%‘_o kl—e ’T) Y

- = =—fE 2E > 0. =
Whmb' :nt;.tntigns ﬁﬂjmq()gs) into Fq. (20) we can be sure. that the equations are
bejngsaﬁaﬁedmdmﬂﬂdiﬂw the refraction indexes are equal Lo uuil pyee = €yoc = 1.

To answer the question, how much is exactly the considered model of a stochastic field
it is useful to conduct calculation of average value of the frequency’s square of a virtual

electromagnetic fields:

W) = [ PO Ga)ckdea = %(1 — M) (143677 45 + .)€ (28)
Now if to suppose that € = ‘/ﬁ, then we can receive the following transcendental equation
for definition of unknown parameter :

1= %{1 —e M) (1+3e7M + 57 +..). (29)
Having solved the equation (26) with taking into account (24) we find, that:
71/2, (30)

whence follows, the important equality Ee, & —v/€ = -/ ().

The received result vindicate, that the proposed model of quantum noise is very-well
describes the quantum vacuum fluctuations. Let’s note that the model of localized photons
may be different, however this fact doesn’t influence on the importance of the conclusion
that the corresponding space E2(&, &4) is & compactified 2D space.

At Iast, note that the vacuum has the same statistical properties in compactified space on
all directions of real three-dimensional space. It in particular follows from similarity of the
equations (10) with the equations (11) when the external field is absent or when it doesn't
experience resistance from vacuum.

4. Propagation of electromagnetic waves in vacuum

The solution of Eq. (14) may be represented in the form:
P(&, €57, t) = P®)(&, & to) [1 + x(6nr €ai T, 2)); (31)

where x(&, £ 1, ) describes the deformation of initial (nonperturbed) quantum distribution
PU®)(£,, £4:10). It is necessary to note that the free evolution of quantum vacuum does not
its statistical properties therefore we can put # = 0.
Now substituting (31) into Eq. (14) we receive the following equation:

({8 D
(6 -8 (Al D + Adr 0 o) o @)
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For solution of Eq. (32) we will supposes that to take place the following initial and boundary
conditions: ¢
X!ullffhfl; r, "}!M= 0, hm{{h{d; r, ‘}Is =0, (33)
where § is a border.
Now we can construct the total distribution ot quantum states on the §1) space-time:

Pouls,Ea7,t) = P&, Eqix,t) = CF )'_:_Q%Pm(a.e.d[l+x...(£s.&;r,:n. (34)

Using the expressions (16) and (34) for the permittivity and permeability of the quantum
vacuum, at presence of external field we receives:

el 8) = 1+ NH5,8) 3 o [ [ 6P e o (6 s, ),
n,ma=0

el ) = 14 857 (08) 3. Com [ [ EdPrm(6s, ol Ealr, s, (35)
n,m=0

where No(r,t) = 52 Cnm J | Praom(6ts €4)[1 + Xum (€, €4; T, t) JdEsdiE, is the constant of nop-
malization.

Thus, it is obvious that in considered case the vacuum’s refraction indexes differ from
unit. As shows the anelysis of the equations, depending on value and behavior of an external
field the specified difference can be essential.
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6. Conclusion

Within the context of quantum field theory the vacuum is the seat of all energetic particle
and field fluctuations. In other words vacuum is characterized by physical parameters and
structure that constilute an energetic medium which pervades the entire extent of the uni-
verse. If the quantum field theory can be accurately described through perturbation, then
the properties of the vacuum are analogous to the properties of the of a quantum mechanical
harmonic cscillator (or more accurately, the ground state of a QM problem). We considered
for the first time this problem within the limits of the stochastic equations of type ML, It has
allowed us to construct the regular theory without application of the perturbation methods.
It has allowed us to develop the regular theory for quantum distribution in vacuum without
application of the perturbation method. Last circumstance has given us the possibility to
investigate the structure and statistics of an electromagnetic component of vacuum in detail.
In particular, it is shown that the accounting of quantum vacuum in the schema of Maxwell’s
electrodynamics is described with the two additional measures which are compactified. For
quantum distribution of vacuum under the influence of an external field the equation Fokker-
Plank type is received and the refraction indexes of vacuum are constructed. It is shown
that they can change under the influence of external fields.
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