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Abstract
An interval total t—coloring of & graph G is a total coloring of G with colors
1,2,...,t such that at least one vertex or edge of G is colored by 4,i = 1,2,...,t,
and the edges incident to each vertex v together with v are colored by dg(v) + 1
consecutive colors, where dg(v) is the degree of a vertex v in G. In this paper we

mthntifG:{V,E)isapaphmmdnjngthewrtuuwit.hda{u} = |V|-1,

t < |V| + 2k(G). We also show that this upper bound is sharp, Further we determine
all possible values of ¢ for which the wheels have an interval total ¢—coloring.

1. Introduction

All graphs considered in this paper are finite, undirected and have no loops or multiple
edges. Let V(G) and E(G) denote the sets of vertices and edges of G, respectively. The
degree of a vertex v € V/(G) is denoted by dg(v), the maximum degree of vertices in G -
by A(G). A total coloring of a graph G is a coloring of its. vertices and edges such that no
adjacent vertices, édges, and no incident vertices and edges obtain the same color. The total
chromatic number x”(G) is the smallest number of colors needed for total coloring of G. If
a is a total coloring of a graph G then a(v) and afe) denote the color of & vertex v € V(G)
and the color of an edge e € E(G) in the coloring . For & total coloring a of a graph G
and for any v € V(G) define the set S [v, a] as follows:

S[v,a] = {a(v)} U {a(e) | e is incident to v}

Let [a] ([a]) denote the greatest (the least) integer < a (> a). For two integers a < b
the set {a,a+1,...,b} is denoted by [a, b].

An interval total —coloring [1, 2] of & gruph G is & ilolal coloring of G with colors
1,2,...,t such that at least one vertex or edge of G is colored by i, i = 1,2,...,t, end the
edges incident to each vertex v together with v are colored by dg(v) + 1 consecutive colors.

For t > 1 let 7; denote the set of graphs which have an interval total t—coloring, and
assume; Tstlz_]l?.'. For a graph G € 7T the least and the greatest values of ¢, for which

G € T;, are denoted by w, (G) and W, (G), respectively.
Terms and concepts that we do not define here can be found in [3, 4].
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2. An Upper Bound for W,(G)

In this section we derive an upper bound for W-(G) depending on degrees and number of
vertices of the graph G with a spanning star, that is the vertex with degree V(G - 1.
Further, we construct graphs for which this upper bound is sharp.

Theorem 1: Let G be a graph containing the vertex u with dg(u) = |V(G)| - 1,
K(G) = maxuev(Gywuydc(v) < [V(G)| - 1 and G € T. Then W,(G) < [V(G)| +2K(G).

Proof: Let o be an interval total W, (G)—coloring of the graph G.

Consider the vertex u. We show that 1 < min Sfu, 0] < k(G) + 1.

Suppose, to the contrary, that min Sfu,a] > k(G) + 2. Since d(v) < k(G) for any
v € V(G)(v # u), then min Sfv,a] 2 2 for any v € V(G)(v # u), which is a contradiction,

Now we have 1 < min S[u, a] < k(G) + 1, hence, [V(G)| < max Sfu,a] < |V(G)|+ k(G).
This implies that max S[v, o] < |[V(G)| + 2k(G) for any v € V(G)(v # u).

Let k be an even integer, n be a positive integer such that k < 221 and n—1 = 0(modk).
Define the graph Gy, as follows (see Fig. 1):

n-1

V(Gia) = {upU{jll <i<—=—1<j <k

E(Gu-J={(tw}}ilsisnT-l.lsJ‘sk}U{(Vi.vi}!l5:‘5“—,:—1.15“35&}

CIWIY| |Vfci.n.” =mn, dc.,.(u) =n—1and dC;,.{U;‘} - kr i= 1;- sey ai_—l.j = 1,...,»‘7.

Figure 1. The graph Gy ..
Theorem 2: Let k be an even integer, n be a positive integer such that k < 21 and
n— 1= 0(modk). Then Gy, € T and W, (Gy,n) = n + 2k. ¢
Proof: For the proof of the theorem we construct an interval total (n + 2k)~coloring of
the graph Gi .

Define e total coloring o of the graph G; , in the following way:
)a(u)=nand a(v]) =2j~1,i=1,...,k

fori=2,..., 2% ~1,j=1,...,k a(v}) = ki +2j;
Da(y™)=n+2,i=1,...k



Inhuvnl'l‘ntal(}olorlnsidGmphlwithaSpannlngsur

4) ron'=1,....nfl--1,j=1.....k,a((mj)) = ki +J;
5) a((u,ﬂ;iz)) =n+ii=1..k

=1,k 8=1...., kT #8 a((@vl)=r+s—1;
g%ﬁ:=2,---.“il—1nf= 1'-'-|k|"'= 1.-"akrt#‘| a((‘-’;ﬂ-’:)] =H+f‘+8;
3}[01-1-=1,_..,k,a=l,...,k,r#8,a((0rﬂiz,0:rx =n+r+s
ltisnotdlﬁculttouheckthntaisanintarmltom (ﬂ+2k?—w10ﬁnsofthemh (e
mthenextsscuonwuhawthaxthmmmphsGmntalmnsthevmuwithdg{g)=
V(G)| - 1, kK(G) = maXypev(G)wwde(®) < [V(G)| —1and G € T, but W-(G) < [V(G)| +

2k(G).

3. Interval Total Colorings of Wheels
The wheel W,(n > 4) is defined as follows:
V(W,) = {#,v1,%s,...,v»1} and
EW,) = {(,0)| 1 <i Sn—1}U{(@vn)| 1< S~ 2} U{(or, 1)}

Lem.l:nal:Letabeanintarvaltotalt—wlorinaofagmththenatotalooloﬂngp,
where

1) B(v) =t +1 — a(v) for any v € V(G), -

2) Ale) =t + 1 — afe) for any e € E(G),
is also an interval total {—coloring of a graph G.

Proof: Clearly, a total coloring g contains at least one vertex or edge with color i,
i=1,2,...,t Since S[v,a] is an interval for any v € V(G), then S[v,a] = [a,b]. From the
definition of the coloring f it follows that S[v, 5] = [t+ 1 — b,t + 1 — a] for any v € V(G).
i _|n+2 ifn=4,
Lemmaz.Fbrmyngtlwehnvew,.efandw,(w,.)_{ & SE

Proof: Clearly, Wy = K hence Wy € T and w.(Wy) = w,(Ky) =6 [2].
Assume that n > 5. 3 '
For the proof of the lemma we construct an interval total n—coloring of the graph W,.
Case 1: n is even.
Define a total coloring a of the graph W, as follows:
1) a(u)=n,a(t;) =2and fori=2,...,5 -1 a(y) =2i+1;
2}a(uz)=n—2,a(09+1}=n—4andforj'=§+2,...,n—10(v,)=2(n—j+1};
s}fﬂl’ =1,2,...,%0((ﬂ,1};)}=2’6"1;
4)forl=2+1,...,n—1a((u,u)=2n-1);
b)forp=1,....§—1a((v,.v,,.;})=2(p+1)anda((v',v9+1))=n—3;
8)forg=3+1,...,n=2 a((vg,ve1)) = 2(n—g) + 1 and a ((v1,v-1)) = 3.
Case 2: n is odd.
Define a total coloring 3 of the graph W), as follows:
ég;{(“]T“-ﬁ(%};ﬁm}dfoﬁ:z...,]_ﬂ--lﬂ{ui)=2;‘+1;

vig)) =n—4,8(vrg)) =n—2 and for j = +1,...,n—=18(v) = ] :
D or Fe i 8] Do) w2k T i il
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4)forl=[3,....n—1B((u,m)) =2(n—1I);

5)forp=1,...,|5] =1 B({(vpvpe1)) = 2(p+ 1) and 3((@1“,va) =n—3;

6)forg=[3],....n—2 B((vg,vp+1)) =2(n — g) + 1 and 8((vy,v5-1)) = 3.

It is not difficult to check that « is an interval total n—coloring of the graph W, when n
is even, and /5 is an intervai votai n—coioring of the graph W,,, when n 1s odd. Hence Wael.
On the other hand, clearly, w.(Wy) 2 X"(Wa) = A(W,) + 1 = n, therefore w,(W,) = n.

Lemma 3: For any n > 5 we have W, € T,.; N T,..3. Proof: First we show that

Wy € Ty, Tor any n 2 5,
Define a total coloring a of the graph W, as follows:
1) alu) = 1,a(v;) = 3,alvrz)) =n —1 and fori=2...,[31-1aw)=2(i+1);
2)forj=[3]+1...,n—1afy;) =2(n-j)+3;
lork=12,...,|3] a((uv)=2k
d)forl=|2]+1,....n-1alluu)=2n-1)+1;
5 forp=1,..., (2] a((tp,vps1)) =2p+3
6) for g = |25t | +1,...,n ~ 2 a((vg, Vgs1)) = 2(n — ¢ + 1) and & ((vy, vpy)) = 4.
It is easily seen that o is an interval total (n + 2)—coloring of the graph W,.
Now we show that W, € T,41, for eny n > 5.
Define a total coloring /3 of the graph W, as follows:
1) for Yu € V(W,) Blv) = alv);
2) for Ve € E(W,)

_ | ale), if afe) #n+2,
Ble) = { n — 2, otherwise.
It is easily seen that J is an interval total (n + 1)—coloring of the graph W,.
Lemma 4: For any n 2> 4 we have W,.(W,,) > n +3.
Proof: Clearly, for the proof of the lemma it suffices to construct an interval total
(n + 3)—coloring of the graph W,,, for n > 4.
Case 1: n is even.
Define a total coloring a of the graph W, in the following way:
Nhori=12...,5+1laly)=2i-1
2) forj=5+2,...,n—1a(v;) =2(n—j+1);
3}r°rk=1121--”%“((”&:””1)):%;
d)forl=5+1,...,n—2c((v,m)) =2(n-1)+1 and o ((v1,v,1)) = 3;
5 forp=2,...,5 a((y,v)) =2p+1and a((v,v)) = 4
6)forg=%+1,...,n—1a((uv,))=2(n—g+2) and a(u) =n+3.
Case 2: n is odd.
Define a total coloring £ of the graph W, in the following way:
l} for f= 1.2&-0-- I_gJ ﬁ{uii = 2i- l.ﬂ“‘lhul»'uln =2i:
2)for j = [3],....,m ~ 1 B(wy) = 2An — 5 + 1)
3) for k= [2],...,n— 2 B ((vk,th41)) = 2n — k) + 1 and B ((or, tn_1)) = 3;
4) for p=2,3,...,[§] B((u,v5)) = 2p+ 1 and B((u,11)) = 4
b) forg=[3]+1,...,n=1B((u,9,)) =2(n—q+2) and f(u) =n+3.
It is not difficult to check that a is an interval total (n + 8)—coloring of the graph W,
when n is even, and £ is an interval total (n + 3)—coloring of the graph W, when n is odd.
Remark 1: Note that W,(W,) =n+3,for4<n <8.
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Lemma 5: For any n > 9 we have Wy(W,) 2 n+4.

Proof: Clearly, for the proof of the lemma it suffices to construct an interval total
(n + 4)—coloring of the graph W, forn 2 9.

Casc 1: @ is oven.

Deﬁneatotalwloﬂnsaofthegmph W, in the following way:

1) a(u) = 7,a(n) = 1,a(vs) =6, a(vs) = Bandfori=4,..—..§—-2a(u.;) =2i+1;

2) o(vg-1) = n+2,a(vg) = n+4 and for j = g+1 ;n—2a(v;) = 2(n—j), a(va) = 3;

3) a((u, v1)) = 3,a((u,v) =5 and for k=3,...,§ — 1 a((u,m)) = 2k +3;

4) forl= g,...,n—-1a{(u,u;)}=2{ﬂ—l+1),

5) a((v1,v3)) = 4,a((va, v5)) = 7 and for p=3,..., § = 2 a((vp Vps1)) = 2(p +2);

6) forg=15— 1,0y —2 a((vgYes1)) = 2(n — g) + 1 and a((vi,¥n-1)) =2.

Case 2: n is odd.

Define a total coloring § of the graph W, in the following way:

1) B(u) =7, B(vr) = 1, B(va) = 6, B(vs) =B and for i =4,..., [B] —1 B(w) = 2+ 1;

2) A(vig)) = n+4, Blurgy) = n+2end for j = [F]+1,.. .n—2ﬁ(u;) 2(n—3), B(tn-1) =

8) A((u,v1)) = 3,8((u,v2)) = 5 and for k=3,..., [§] B((u, ) = 2k +3;

&) for 1= [§l-..,n—1((wu)) = 2An—1+1)

5) B((v1,v2)) = 4,8((va,vs)) = 7 and for p=3,..., 3] B ((vp, Up41)) = 2(p + 2);

6) for g = [§1,...,n— 2 B((vg,Yg+1)) = 2(n — g) + 1 and B((v1,v51)) = 2.

It is easy to check that « is an interval total (n + 4)—coloring of the graph W,,, when n
is even, and £ is an interval total (n + 4)—coloring of the graph W,,, when n is odd.

Lemma 6: For any n > 4 we have W, (W,) <n+4.

Proof; l'-‘romthetheoremlwahawthatW,-(W,.)*:n+6 for any n > 4,

First we prove that Wy, ¢ Tns.
! Sugzuse.t.otheoontnry that o is an interval total (n + 5)—coloring of the graph W,
or n > 4. :

Consider the vertex u. Clearly, 1 < min S[u, ] < 6, hence n < max Sy, a] < n +5.

Lemma 3 implies that the following three cases are possible:

1) S[u,a] = [6,n+ b];

2) Sfu,a] = [6,n +4];

8) S[u,a] = [4,n+3].

Case 1: S[u,a] = [6,n+ 5] or S[u,a] = [5,n +4].

Clearly, a((4,w)) > 5,4 =1,....,n—1. This implies that min Sfu;, a] > 2, i = o
which is & contradiction. i [na] 22,i=1,...,n~1,

Case 2: Sfu,a] = [4,n +3].



Figure 2.

First we show that a(u) # 4. Suppose that a(u) = 4. This implies that a((u,v)) > 5,
i=1,...,n— 1, which is a contradiction.

Let e = (u,v;) and a(e) = 4. Note that a(v;) = 1.

Without loss of generality, we may assume thut a((vy,v)) = 2, a((vy,tp-1)) =
3,a((u, 1)) = 5,a((u,v,_;)) = 6, and there is a vertex v, such that either a(vg) =n+5, or
a(vg, vp41)) = n + 5 (see Fig. 2),

Let us consider the simple paths

Py = (v, (v1,v%2), 92, - . ., Uk, (Viy Vie1), Vi)

and
-P) . (”Il-li (”’I"J.! ”n—?}r“l-?l cony Ukl (uﬂliﬂljvﬂi) 1

where1<k<n-2
Let us show that fori=2,...,k.
1) a(v) = 2i - 1, a((vi, vi41)) = 2, o (u, ) = 2i + 1,
2) alvns1-1) = 2i, o (Vp—iy Unt1-4)) = 28 + 1, (8, v011-3)) = 2(i + 1),

We use induction by 4. For i = 2 it suffices to prove that a(v;) = 3,a((vy,v3)) =
4, a(vn-1) = 4, a((va-2,Vn-1)) = 5.

Consider the vertex v;. Since a((vy,v3)) = 2 and a((u,v;)) = 5 then min Sfvy,a] = 2
and max Sfvg,a] = 5, therefore {3,4} C Sfu;,a). If we suppose that a(v;) = 4 then
a((vz,v3)) = 3 and max S[vs, a] < 7, which contradicts max S[vs, @] > 7. From this we have
ol (,4)) = 7 (see Fig. 2),

Now we consider the vertex v,—;. Since a((vi,v,—1)) = 3 and a((,v,_;)) = 6 then
min Sfun-1,a] = 3 and max Sfv,-1,a] = 6, therefore {4,5} C S[v,-,,a]. If we suppose
that afv,-;) = 5 then a((vn-2,vn-1)) = 4 and maxS[v,_3,a] < 8, which contradicts
max S[va-2,a] > 8 (see Fig. 2).

Suppose that the statements 1) and 2) are true for all #,1 < #* < i. We prove that the
statements 1) and 2) are true for the case i + 1, that is a(v41) = 2i + 1, a((vis1, vi42)) =
2i-42, ﬂ[(ﬂ. 'l'JH.j)) = 2i+3 and Q(‘l’n_;) = 2i+2, 0((9,..!-1, U,'_i)) = 2‘l-+3, Q((ﬂ, ﬂn_f}) = 2i+4.
From the induction hypothesis we have:

1') n{v_f) =2j - lia{(uﬁujﬂn = 23"0((“-1&)) =2j+1,

p 2) E;(Mh_ﬂ = 2, ((Vn-1, Vns1-5)) = 25 + 1, 0((4, Vny1—5)) = 25 + 1),
or §=2,...,%
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estha.ta((u,mﬂ}=2i+31;1)lda(g1_s.un.;)) (——(2i+4).} s,
Consider the vertex vii- Since a((v,v41)) = i and af(u, vi41)) = i+ i
min S[vis1, a] = 28 and m.a;S[m1,a]=2i+3. therefore {2i + 1-2""2}93[1':4:1.0]- If we
suppose that a(v1) = 2i+2 then o((ti41, Vi+2)) = 2i+1 and max S[vjz, a) < 2i+5, which

adicte max Sl 5, o] = 25, Tvom this we hove af{x, vea)) = 28 1 6 (sec Fig. 2). Next

;uwc:ﬁsi?:rnt:ha velrte:( uj..;. Since or((Un41-1y Vn—i)) = 28+ 1 am:l a{(u,.u,,_i)) = 2i + 4 then
min Sfvn—i,a] = 2i+1 and max Sfun-i, a] = 2i+4, themfom {2i+2,2i+3} C Sun—i, a‘]. It
we suppose that a(va—i) = 2i+3 then a((vn—t-1, Vn—si)) = 2i+2 and max Sfvn—i-1, ] < 2i+6,
which contradicts max S[vp-i-1,0] 2 21 +6 (see Fig. 2).

mel:]wehavek2§+2.From?']wahlwgksg—l.. :

ltiseuyt.oseethntdoesnotmdutsuchmmduk.whchsambthea[omsnﬁoned
inequalities. This completes the prove of the case 2.

Analogously it can be shown that W, & Toss, hence W (Wy) < n+4, foranyn > 4.

From lemmas 2, 3, 4, 5, 6 and remark 1 we have the fo!lawim result:

Theorem 3: For n > 4 we have

1) and 2') impli

(1) Wa €T,

=4,
@ woi={ "+ hazs

n+3, If4$ﬂ$8
(3) We(Wa) = { nid 029,

(4) if w(W,) <t < Wi (W,) then W € . |
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Ydwjupuhl wuunnny gnublhph dhowlupuishe thwljwwnwn GeplmudGhp
M. Mbwnpnuywi, L. buyunppui

Uiithnthmud

G qpuph jhwhwwawn Gbpimdp 1,2,...5¢ qniylbpny YuwGywGhGp Uhgwlwpuijh
thwljwumnwp ¢ ~Gbpynud, bpb wibG 6h i gnybny, i = 1,2,...,¢, Ghpljwd ¢ wnfiuql dbl
quiquip, Ywd Ynr, L jupwpwlyniy v quiquiphl Ghg Gnnbpp, L wn quqwpp Ghplgws t
dg(v) + 1 hugnpruluil gnyGlpng, npntn dg(v) -0y Gawlwiwd v ququph wunhéwbp G
gpuipnud: Uy whuumuGpoul wywgmgywd t, np bpt G = (V, E) -G, npp wwpmGwims t
wylujhuh u quiqup, np de(u) = [V|~1, k(G) = mex,ev(upuyde(v) < [V|-1LC qphi mGh
dhguljujpuijhG (hwiwwnwn ¢- Giphnud, wuw then ¢ < [V| + 2k(G): bl gnyg t wpgwa,
np wju Ytiphl qlwhunnwiwip hwuwbbih b Umhbwnk, by bG t- h pnjnp hGwpuwignp
wndtipGpp, npnlg hwiwp wihyGepp mGb6 Shewlwipuihl (hwluwnwnp - Gbplnus:



