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Abstract

In this work the problem of interferometric phase reconstruction is considered-
The pointwise approximation approach is proposed, which provides stable results even
for bad quality of interferogramms. Experimental results show that the developed
algorithm demonstrates better performance in comparison with some of the state-of-
the-art techniques.

1. Introduction

Two dimensional phase measurements have many important applications in different areas.
For example, in Synthetic Aperture Radar Interferometry (InSAR) the interferometric phase
can be used to make extremely fine measurements of surface topography, deformation, or
velocity [1, 2, 3]. In adaptive optics the phase measurements provide estimates of atmospheric
turbulence effects on an optical imaging system [4, 5, 6]. These atmospheric distortions are
then removed through the use of a deformable focusing mirror. In magnetic resonance
imaging (MRI) phase measurements from 2-D, or 3-D MR images can be used for such
purposes as estimating blood flow rates (7], or separating water and fat signals (8, 9].

In each of these cases, the absolute phase extracted from an actual signal is wrapped
into the interval (—, 7] and called principal or wrapped phase. If absolute phase value is
outside the interval (—, 7], the observed value is wrapped into this interval by addition or
subtraction of some multiples of 2. The relationship between the wrapped phase t and the
unwrapped (absolute) phase ¢ is stated as

: Y=¢+2mk, Y& (-ma] ()
In t.].iléI applications mentioned above the wrapped phase ¢ is useless until 2 phase dis-

continuities are removed, which is realized by using phase unwrapping algorithms. Phase
unwrapping is an ill-posed problem, if no additional information is added. In fact, given
any wrapped phase data, there is an infinite number of possible corresponding unwrapped
phase data. Simply stated, the phase unwrapping problem is to obtain an estimate  for
the absolute phase ¢ from the wrapped values 1.

Measured values of wrapped phase are usually corrupted by noise which makes phase
unwrapping problem more difficult. The phase unwrapping from noisy data starts from the

following observation model:
9 =W(¢+A¢), (2
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where Ad denotes a random error additive to ¢, end gy is the observed noisy wrapped
phase. W is a wrapping operator transforming the noisy absolute phase ¢+ A¢ to the basic
interval (—m,7]. The phase unwrapping problem for noisy data is to restore the absolute
phase ¢(z,y) from the noisy wrapped observations gy(z,y), z,y € X. (In this work X is
vuimiduiel oo an iubegs 2D wid, X = {s,y. 2= 1,2,... N,y = 1,2,..,5d}).

Meny various approaches to 2-D phase unwrapping have been proposed over the past
several decades, but only a limited number of them are currently in common use. The
methods developed for phase unwrapping problem can be roughly separated in two large
families: Path-following (local) methods and Minimum-norm (global) methods. The first
family of algorithms relies on performing integration of the discrete gradients (wrapped
differences) along paths. The algorithms of the second family rely on global approximation
of the absolute phase. A comprehensive review of these two families of algorithms is given
in [11]. The developed technique belongs to the second family of the algorithms with the
only difference that approximation is performed on each point (local).

2. Observation Model

A variety of models exist for phase observation depending on measurement principals. In
this paper we use the following one (Figure 1):

Figure 1: Observation model.

Let
¢o={dlz,y) eRz=1,..,Nyy=1,...M}, (3)

be the original absolute phase. The observation model is stated as
u =cosp+mny, u=sing+ny, @

where u; and u; are the so-called in-phase (cosine) and quadrature (sine) components of the
absolute phase ¢, and n; and n; are independent white Gaussian noises. Then the wrapped
phase gy is calculated as follows:

gy = arctan E-: (5)
We mention that, particularly in optical interferometry and InSAR, the presence of additive
white Gaussian noise in the in-phase and quadrature components is in fact the commonly
adopted model [12, 13, 14, 15].

If we consider cos and sin of Equation 1, the difference between wrapped and unwrapped
phases disappears (cos) = cos ¢ and sin 1 = sin ¢) and we can use a fit of these transformed
observations for the absolute phase reconstruction. We consider observation in transformed
domain (using cosy and siny) because in phase domain wrapped phase is discontinuous even
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characteristics of wrapping operator
n of the arguments
of the estimation

for a continuous absolute phase because of non-linear
W. We also assume that the absolute phase ¢(z, y) is a continuous functio

« and y and allows a good polynomial approximation in a_neﬁghburhuod

point (z,v)- 1 ot
The developed elgorithm is based on the pointwise epproximetion o2 spatially vRrying
i - mation we use local

absolute phase from its wrapped observations. For pointwise 5
polynomial approzimation (LPA) [16]. LPA is applied for direct pointwise phase approxima-
tion using polynomial fit in the sliding window. The window size is a key parameter of the
algorithm.
We assume that observed data is given in phase form (5). Then we calculate
1= co8(gy), 02 =sin(gy), ©

which are correspond to transformed noisy observations, According to Equation 2 we can
rewrite them in the following form: .

o =cos(p + Ag), g2 =sin(¢ + Ag), M
* where A¢ is an error additive to ¢ caused by observation errors in gy.
TheLPAisappliedinordartoappmximatenbeolutaphasesﬁasannrﬁum@tdham

functions in Equation 7
The proposed algorithm was called PAP (pointwise approzimation of phase). The con-
tribution of this paper is a development of this algorithm.

onic

3. Proposed Approach

Let us now introduce LPA estimates of the phase. Assume that in some neighborhood of the
point (z,y) the phase ¢(z, y) can be represented in the following form (vector representation
of the truncated Taylor series) [16]:

';(-"n yl[P) = F{;l.'"y.)p‘ (8)
sl (mf?'qa} is a vector of first order polynomials ¢ = 1,g; = 7,98 = ¥, and
;’OFWU;{'H-P&} is & vector of unknown parameters. The local fit loss function is defined es

Jh(ﬁ,ﬂ,p) %?wfﬁl [9‘1(=+=uﬂ+y:) = ma{zﬂ yllp)]2

+ e [0 + Zary + 1) — sin (e alp)]
= Lo [1=cos (g9(z + 2y +0) ~ 8z walp))]
g Whs = Wh(Tay ¥s) 2 0. 9)
& vector of unknown parameters p is defined as a solution of following optimization prob-
. | p = argmin Ji(,y, 7). (10)
The LPA estimates of the phase ¢ and the first derivatives ¢{, (1) are as follows [16]:

3(3.10 =ﬁ(zty): @(ﬂsﬂ) = ﬁl(xry)! éﬂ(zl y) =—‘ﬁg(2,ﬂ]. (11)
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The window wy,, defines a set of neighborhood observations and their weights in estimation
for point (z,y). The scale parameter A in wy,, defines the size of the window and is usually
used in the following form: w(z,y) =w (§, %), > 0. For example, for the square uniform
window wy, = 1 for |z] < A, |y| < h and wy, = 0, otherwise.

::3:‘ slivws that we Obtaiu nimuliﬂu.u.nhi} il estimaies of the .‘ @ and iis firsi
derivatives ¢z, ¢y. These estimates depend on the coordinates (z,y) and the window size h.

We wish Lo mention the nonparametric nature of the introduced estimates, because
the polynomial approximation (8) is used only for a single “central® point z, = y, = 0.
For the phase it gives ¢(z,y) = $(0,0}p) = #i(z,y) and for the derivatives ¢.(z,y) =

() =) o) = (B52) = ().

Minimization of Ji(z,y, p) with respect to vector p can not be expressed in an explicit
form and requires numerical recursive calculations using the vector-gradient: & Li(z,y.p) =
(8, Ju(%,9,P))»1, and the second derivative (Hessian) matrix: 8,8,7La(z,y.p) =
(8,85, (2, Y, P)) ss 24, Where M denotes the dimension of the vector p (in our case M = 3).
There are different procedures for calculation of the estimates. We consider the Newton
method, which can be expressed in the following form:

p(h1}=p(t)_ai§rb‘(+'p‘”)‘ k=0,1,..., (12)
where p'*) are sequential iterations of p, 0 < oy < 1 is the step size parameter, and the
gradient 8,J), is calculated for p = p*),

The straightforward manipulations give the Hessian matrix and the vector-gradient in
the form:
8!‘]’4 - ;"’M sin (9*(: + T Y+ Us) — 6(5..; Ys |P)) Q(zu Ys)s (13)
H = 807J
- Z Wh,s COS (W(: +z,,y + VJ) == &(zn l"llp)) q(zll' vquT(zﬂ yl]' (14)

Assuming that the error appraximation of cos (g4(z + s, ¥ + ) by @(%s, %|p) is small, we
can rewrite (14) in the following form:

H= 2“».-?(3-: l'h)qr(zn s)- (15)

The Hessian matrix (14) can be used to analyze the convexity of the function Ju(z,y, p).
For the noiseless case we have gy(z + z,,¥ + ¥s) = ¢(z + Z,,¥ -+ ys). Substituting these
expressions in (14), we find that

GO dy = E Wh,s COS (¢(3 + Ty Y+ Vs) — 6(311 lfalp)) (%o Ys) " (25 Us)- (16)

Let us assume that the polynomials g(z,,y,) are linearly independent in area where wj , > 0.
It follows that the matrix 3, wh +(Zs, ¥2)q" (Zs, ¥s) i8 positive definite. Then we can conclude
for Equation 16 that if =4

|¢(z + 25y v + VJ) = ¢(£,. lhlp)l < E’ (17)



52 Pointwise Reconstruction of Interferometric Phase

t : i itive definite.
cos ($(z + Tas ¥ +s) —dv(a:..v.lp)) > 0 and the matrix 8,8,rJx is also P‘:“;{ iie Ne
It proves that the function Ju(z, ¥, ) is locally convex and the convex_genof B
ton method can be guaranteed at least locally provided a proper selection
anpt=l_

i S f= ) orovided that in the neigh
T irsive procedurs (12) gives the sstimate for any (2, ¥, PrOvIGst wias | 3
bar:::dr?f-“:hls p:i‘nt there is a sufficient number of observations (Zs, ¥s)- With mdepet; :;l:
initialization for each point this is only a dencising algorithm which does notelemmenumt i
phase unwrapping. Because of that this pointwise estimaté is used as an e

more complex procedure with a special sequence of the estimation points (=) 8 s
with underlying intention to reconstruct continuous phase function é(z,v)- For ins ‘::a'
it can be a line-by-line sequence. Let us introduce a sequence of the nmghbonnsdpm_
{:"'Ly‘"l} v ofe rectangular phase data, starting from the point (1'1 1) and going
slong the fist iine, further along the points of the second line, and in a similar way up to
the last line. In this way we order all points of the phase data as a sequence. e
The flow chart of the algorithm is presented in the Figure 2. AstralghffOrWB-l‘d- s
the algorithm is to use for initialization of recursive estimator (12) for the given pomt \Z, ¥
the estimates already obtained for its neighboring points. ) g
Let p (2, y(™)|p) be the estimate for the point (=™, y™), provided that the recursive
pointwise algorithm (12) is initiated by the vector p. The proposed phase UIWIapping
algorithm is defined in the following sequential form:
) = g (o, o), (8)
3 (=, y('n)) -,
3O (2, y) = g,
3 (=9.0) = 30", 19

Figure 2: The Flow chart of the algorithm
The recursive pointwise estimator (12) is included in this recursive procedure. It.is
initiated by the vector p("), which is the estimate for the first point (z,y)). This estimate
can be defined from the boundary condition or can be taken from the original observations.
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————

Presented algorithm solves two important goals: noise suppression and absolute phase
reconstruction. Expwhnmsbowthatthamuncyoﬂhenlsoﬁthmisbjghpmvidedthn
the absolute phase differences in the neighboring points are not larger than 0.5+ 1 radians.
The accuracy is as high as small this difference, even for 2 high level of the random noise.

The window gize h ie & crucis] psvameter for tho securacy of cotimotion. When the
window size is small, the LPA gives a good smooth fit of signals, but then fewer number
of observations are used and the estimates are more variable and sensitive with respect to
the noise. The best choice of h involves & trade-off between the bias and variance, which
depends on the degree of the LFPA, the noise variance, and the denivatives of ¢ of the orders
beyond the degree used in the LPA.

Theoretical analysis and experiments show that the efficiency of the local appraximation
estimates can be essentially improved provided a correct selection of the window size k. It
can be varying or invariant but must be properly selected.

4. Experimental Results

For the algorithm's performance test we use ZwM algorithm, which is considered as
one of the best algorithms developed for noisy data [17]. For the accuracy mea-
surements of the developed algorithm we use the root-mean-squared-error: RMSE =
\/El";):(ﬂz.,y.} -¢(:e.,y.))’. With the LPA we use the uniform square windows
wy, defined on the integer grid Uy = {z,y : z = —=h,-h + 1,...,0,...,h — Lhyy =
<h=h+1,...,0,...,h—1,A}.

Figure 3 illustrates the original absolute phase ¢ (a) and noisy wrapped phase gy (b)
obtained from ¢ according to Equation 5, with the standard deviation of the white Gaussian
noise @ = 0.6. This figure also presents results of the reconstruction for the different window
sizes (c)-(f). Comparing the original and reconstracted phases, one may conclude that the
noise suppression and phase reconstruction are performed quite accurately.

[ TEAN S

Beppwnn

Figure 3: a) Orl;uml absolute phase ¢, b) observed wrapped phase gy with a.:lditiu white Gaussian noise,
c)nwm:mdphmébrwmdwdmhal,d}manpthforﬂndowsheh=2,
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e)mmMpM5WMWmh=3.ﬂmmmphméwmdwmhs4.

Table below contains the numerical evaluation of the two algorithms for the original
absolute phase ¢ presented in Figure 3 (a). For estimation we use different window sizes
h = {1,2,3,4} and different values of standard deviation o of the white Gaussian noise
in (4). Based on the obtained results we can conclude that the proposed algorithm gives

fthm/o | 0.1 [ 0.2 [ 0.3 [ 0.4 | 0.5 | 0.6
PAP, h=1__| 0.04 [ 0.07 | 0.11 | 0.15 | 0.20 [ 0.25
PAP, h=2__ | 0.05 | 0.06 | 0.08 | 0.10 | 0.13 | 0.16
PAP, h=3__[0.09 | 0.10 | 0.10 | 011 [ 0.i2 | 0.15
PAP, h=4__[0.15 | 0.15 [ 0.16 | 0.16 | 0.17 | 0.18
[(ZxM 0.05 [ 0.08 0.11 | 0.15 | 0.19 | 0.2

significant improvement of the accuracy of reconstruction, which in fact depends on correct
selection of the window size h. Asfoﬂmﬁomrmuhspmmtadinmb!e,thebﬁtmults
for low level of noise were obtained with window size h = 2, while for the high noise level
the best window size is h = 3.

One of the possible directions for further research is development of adaptive procedure
for window size selection.
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