The Clique Covering Number for the Strong Product of Generalized Cycles

Sevak H. Badalyan

Yerevan State University sevak_badalyan@yahoo.com

Abstract

In this paper the clique covering number for the strong product of generalized cycles is investigated. A method is given to construct a minimal clique cover in case some conditions hold.

Preliminaries

A set of vertices of a graph is a clique if every two distinct vertices in it are adjacent and if it's maximal with respect to this property. A collection C of cliques is a clique-cover of graph G if $\bigcup_{Q \in C} Q = V(G)$, where V(G) is the set of vertices of G. The clique-covering number of G,

 $\sigma(G)$, is the number of cliques in a minimum clique-cover of G. A graph is called k-regular if the degree of each vertex is k.

For real number $c \in R$ we shall use the following notations:

[c] - greatest integer less than or equal to c,

c - least integer greater than or equal to c.

Generalized cycles are defined as follows:

Let's denote by C_n^k the 2k-regular graph with n vertices which can be ordered on a circle so that each vertex is adjacent to the k vertices coming after and before it on the circle $(n > 2; 1 \le k \le \lfloor \frac{n-1}{2} \rfloor)$.

The strong product of G_1 and G_2 is a graph G with vertices V(G) and edges E(G), where

 $V(G) = V(G_1) \times V(G_2)$ and $[(u_1, u_2), (v_1, v_2)] \in E(G)$ if and only if:

1. $u_1 = v_1$ and $(u_2, v_2) \in E(G_2)$, or

2. $u_2 = v_2$ and $(u_1, v_1) \in E(G_1)$, or

3. $(u_1, v_1) \in E(G_1)$ and $(u_2, v_2) \in E(G_2)$.

A non-negative real-valued function f on V(G) is called admissible if for each clique C, $\sum_{v \in G} f(v) \leq 1$.

The Rosenfeld number $\rho(G)$ of a graph G is defined as [1, 2]:

 $\rho(G) = \max_{f} \sum_{v \in V(G)} f(v)$, running over all f admissible functions.

One can deduce that

$$\rho(C_{2n+1}) = n + \frac{1}{2},$$

$$\sigma(C_{2n+1}) =]\rho(C_{2n+1})[= n + 1,$$

 $\rho(C_n^k) = \frac{n}{k+1},$
 $\sigma(C_n^k) =]\rho(C_n^k)[,$

where C_n is a cycle of length n. The following inequalities are known for each of graphs G and H [1, 2]

 $\sigma(G \times H) \le \sigma(G) \times \sigma(H),$ $\sigma(G \times H) \ge \rho(G) \times \sigma(H).$

Hales [2] obtained the following result for the clique-covering number of strong product of two odd cycles $(2 \le k \le n)$:

$$\sigma(C_{2n+1} \times C_{2k+1}) = |\rho(C_{2n+1}) \times \sigma(C_{2k+1})|.$$

2. The Strong Product of Generalized Cycles

The above result due to Hales is generalized here. We'll use the following notations $r_{mp} = mmod(p+1)$,

 $r_{nk} = n mod(k+1).$

Theorem 1: Let C_m^p and C_n^k be generalized cycles. If the following conditions hold: $1)p+1 \ge 2r_{mp}, r_{mp} \ne 0$,

 $2)(\sigma(C_m^p)-1)(k+1-r_{nk}) \leq [\sigma(C_n^k)/2](k+1)$, then

$$\sigma(C_m^p \times C_n^k) =]\sigma(C_m^p) \times \rho(C_n^k) [= \sigma(C_m^p) \times \sigma(C_n^k) - [\sigma(C_m^p) \frac{k+1-r_{nk}}{k+1}]. \tag{1}$$

Proof: Since the right hand is a lower bound for σ it's enough to construct a clique cover to attain that bound. Let's denote the vertices of C_m^p and C_n^k by numbers 0, 1, ..., m-1 and 0, 1, ..., n-1 correspondingly. Then for the vertex $(x, y) \in V(C_m^p \times C_n^k)$ let

$$Q(x,y) = \{(x+i,y+j) : i = 0,...,p; j = 0,...,k\}$$

be a clique in the product graph $C_m^p \times C_m^k$ (x+i and y+j are taken by modulo m and n respectively). We will also use the notations below

 $t = [\sigma(C_n^k)/2],$

 $\sigma_{mp} = \sigma(C_m^p),$ $\sigma_{nk} = \sigma(C_n^k).$

Consider the following families of cliques

$$\begin{split} Q_0^0 &= \{Q(0,(k+1)i): i=0,...,t-1\},\\ Q_0^1 &= \{Q(r_{mp},(k+1)i): i=t,...,\sigma_{nk}-1\},\\ Q_1^0 &= \{Q(p+1,k+1-r_{nk}+(k+1)i): i=0,...,t-1\},\\ Q_1^1 &= \{Q(p+1+r_{mp},k+1-r_{nk}+(k+1)i): i=t,...,\sigma_{nk}-1\}, \end{split}$$

$$Q_{\sigma_{mp}-2}^{0} = \{Q((p+1)(\sigma_{mp}-2), (k+1-r_{nk})(\sigma_{mp}-2) + (k+1)i\} : i = 0, ..., t-1\},$$

$$\begin{split} Q_{\sigma_{mp}-2}^1 &= \{Q((p+1)(\sigma_{mp}-2) + r_{mp}, (k+1-r_{nk})(\sigma_{mp}-2) + (k+1)i) : i = t, ..., \sigma_{nk}-1\}, \\ Q_{\sigma_{mp}-1} &= \{Q((p+1)(\sigma_{mp}-1), (k+1-r_{nk})(\sigma_{mp}-1) + (k+1)i) : i = 0, ..., \sigma_{nk} - [\sigma_{mp}\frac{k+1-r_{nk}}{k+1}] - 1\}. \end{split}$$

We will show that the union of the families above is a clique cover for the product graph. Obviously its cardinal number is equal to the right hand of the equality (1). Let $(x,y) \in V(C_m^p \times C_n^k)$, then the following 3 cases are possible

1)
$$r_{mp} \le x \le m - r_{mp} - 1 - (\sigma_{mp} - 1)(p+1) - 1$$
.
Then $x = s(p+1) + c$, $0 \le s \le \sigma_{mp} - 2$, $0 \le c \le p$. If $s = 0$, then $r_{mp} \le c \le p$ and clearly $(x, y) \in Q_0^0 \cup Q_0^1$, otherwise $(x, y) \in Q_{s-1}^1 \cup Q_s^0 \cup Q_s^1$.

 $2)m-r_{mp}\leq x\leq m.$

Then x = s(p+1) + c, $s = \sigma_{mp} - 1$, $0 \le c \le r_{mp} - 1$. If $0 \le y \le (k+1-r_{nk})(\sigma_{mp} - 1) - 1$, then $(x,y) \in Q^1_{\sigma_{mp}-2}$, otherwise we have

$$(k+1-\tau_{nk})(\sigma_{mp}-1)+(k+1)(\sigma_{nk}-[\sigma_{mp}\frac{k+1-\tau_{nk}}{k+1}]) \ge$$

$$\ge (k+1)\sigma_{nk}+(k+1-\tau_{nk})(\sigma_{mp}-1)-\sigma_{mp}(k+1-\tau_{nk}) \ge$$

$$\ge (k+1)\sigma_{nk}-(k+1-\tau_{nk}) \ge n,$$
(2)

therefore $(x,y) \in Q_{\sigma_{mp}-1}$.

 $3)0 \leq x \leq r_{mp} - 1.$

In this case if $0 \le y \le t(k+1) - 1$, then $(x,y) \in Q_0^0$, otherwise we have the conditions of the theorem and inequality (2). According to the 1st condition of the theorem, $Q_{\sigma_{mp}-1}$ covers a part of vertices with first coordinate up to $r_{mp} - 1$ (and more if p+1 is strictly greater than $2r_{mp}$). According to the 2nd condition of the theorem and inequality (2), there are no uncovered vertices with second coordinate $t(k+1) \le y \le n-1 (0 \le x \le r_{mp}-1)$, hence $(x,y) \in Q_{\sigma_{mp}-1}$.

Therefore the union of the mentioned families is a clique cover of the product graph with required cardinality.

Corollary 1: Let C_m^p and C_n^k be generalized cycles. If $p+1=2r_{mp}$ and $k+1=2r_{nk}$, then

$$\sigma(C_m^p \times C_n^k) = \max(|\sigma(C_m^p) \times \rho(C_n^k)|, |\sigma(C_n^k) \times \rho(C_m^p)|).$$

Proof: The right hand of the suggested equality is a lower bound for $\sigma(C_m^p \times C_n^k)$. If the 2nd condition of theorem holds then the proof is immediate, otherwise we have

$$(\sigma(C_m^p)-1)(k+1-r_{nk})>[\sigma(C_n^k)/2](k+1)$$
 and since $k+1=2r_{nk}$ we get $\sigma(C_m^p)/2>[\sigma(C_n^k)/2]+1/2\geq \sigma(C_n^k)/2$,

 $[\sigma(C_m^p)/2] \ge \frac{\sigma(C_n^k)-1}{2}.$

The latter is the second condition of theorem and with $k + 1 = 2r_{nk}$ equality it implies that

$$\begin{array}{l} \sigma(C_m^p \times C_n^k) =]\sigma(C_n^k) \times \rho(C_m^p) [\leq \max(]\sigma(C_m^p) \times \rho(C_n^k)[,]\sigma(C_n^k) \times \rho(C_m^p)[), \text{ hence } \\ \sigma(C_m^p \times C_n^k) = \max(]\sigma(C_m^p) \times \rho(C_n^k)[,]\sigma(C_n^k) \times \rho(C_m^p)[). \end{array}$$

References

 M. Rosenfeld, "On a problem of C. E. Shannon in graph theory", Proc. Amer. Math. Soc. 18, 315-319, 1967. [2] R. S. Hales, "Numerical invariants and the strong product of graphs", Combin. Theory (B) 15, 146-155, 1973.

Ծածկույթի թիվը ընդհանրացված ցիկլերի ուժեղ արտադրյալի համար Մ. Քադալյան

Ամփոփում

Մույն աշխատանքում ուսումնասիրված է ընդհանրացված ցիկլերի ուժեղ արտադրյալի ծածկույթի թիվը։ Որոշ պայմանների առկայության դեպքում արված է եղանակ մինիմալ ծածկույթը կառուցելու համար։