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Abstract

TheMn;pmductdmoddcyuhandamunliadqydaandthemmgmduﬂ
dnwmwmmmmmwmmammnmmm
nmbluautormiminmductysphtanchjmthnkmmupwbmmda(GxH)g
p(G) # a(H) in case some conditions hold. For the stable set number of strong product
of generalized cycles a lower bound is found.

1. Introduction

The investigation of the stable set number of product graphs has come from the problem in
information theory due to Shannon [1, 2]. Ore in (3] raised the following problem:

Given a finite graph G, what are the necessary and sufficient conditions on G in order
that (G x H) = a(G) x a(H), for every finite graph H, where a(G) is the stable set number
of G.

For the equality above a sufficient condition is found by Shannon [1|. Then Rosenfeld
[4] proved its being not necessary and gave a necessary and sufficient condition, thereby
introducing an invariant called p, the Rosenfeld number. In [5], Hales obtained the non-
multiplicative behavior of the stable set number on the strong product of odd cycles. This
work is closely related to it.

2. Preliminaries

A set of vertices of a graph is stable if no two vertices in it are adjacent. A stable set
containing k vertices is called k-stable set. Let's denote by a(G)-the number of vertices in
a maximum stable set of G. A graph is called k- regular if the degree of each vertex is k.

For real number ¢ € R we shall use the following notations:

[¢] - greatest integer less than or equal to ¢,

J¢[ - least integer greater than or equal to c.

Generalized cycles are defined as follows:

Let’s denote by Ck the 2k - regular graph with n vertices which can be ordered on a
circle so that each vertex is adjacent to the k vertices coming after and before it on the circle
(n>21<k<[25).
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28 The Stable Set Number for the Strong Product of Generalized Cycles

The strong product of G; and G is a graph G with vertices V() and edges B(G): ity
V(G) = V(Gy) x V(Ga) and [(u1, ua), (v1,va)] € E(G) if and only if:

1. U =11 md (uﬂr") € E(GﬂJu

2 u=u a.ud;(m\. v) G{E(GI‘)! )

a: u,%‘l}EECAuﬂdulﬂ ~ /0 A

A non-negative real-valued function f on V(G) is called admissible if for each clique C,

E flv) <1
The Rosenfeld number p(G) of a graph G is defined as|4, 5]
p(G) = m}u Z f(v), running over all f admissible functions.

One can deduce that..
PCait) =0+,
a(Can1) = D’(Ganu)] =n,
ACR) =77 + T
Q{C‘:} "' [P{O:}]I
where C,, is a cycle of length n. The following inequalities are known for each of graphs G
and H [4, 5],
a(G x H) 2 a(G) x a(H),
a(G x H) <p(G) x a(H).
Hales [5] obtained the following result for the stable set number of strong product of two
odd cycles (1 < k < n):
a(Cans1 % Cait1) = &(Cant1) X a(Caiyr) + [2(Coks1) /2] = [p(Canir) X a(Cari1))-

For the related results on the stable set number of products of cycles refer to [6, 7, 8]-

3. The Strong Product of an Odd Cycle and a Ge.nera.hzed Cycle

Theaboveresultduetoﬂalesmganemlmedonthepmmceofmmemnmhmmthe
following way

o(Cant1 X OF) = &(Cans1) X a(CE) + [a(C)/2] = [p(Cans1) x a(CHL.(1)

Let's enumerate the vertices of C3,41 With numbers 0,...,2n. In order to obtain (1) we
should construct 2n + 1 stable sets Sy, ..., Sy, in CF such that:

1. 5 N'Sysnymed(onsr) = 0,i=0,...,2n;

2, ‘i“US(“'HMh"'” sets are stable in Cf,i=0,...,2n;

3. 2,151l = a(Cani1) X a(CF) + [(CR)/2] = n x o(C}) + [(CE)/2].

In that case the stable set below in the product graph will have the required cardinality

L O

n
§=U{Gv)/ve s}
i=0
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It's obvious that the conditions 1-3 above are also necessary conditions for equality (1).
Those conditions imply that |S;| > [a(Cf)/2],i =0,...,2n. Indeed, let’s assume that there
is a set with a cardinality less than the mentioned number. Applying the 2nd condition we
can imply that the remaining sets cardinal numbers sum cannot exceed n x a(C¥), hence
it's not possibls {9 zet the equolity sugzedted b 8rd condition.

Lemma 1: Consider the graph Cf and hmod(k + 1) = 0. In that case equality (1)
doesn’t hold.

Proof: Suppose the equality holds. Heance it's pussible to mention ( 2n +1) stable sets in
Cy greph with 1-3 properties. As stated abaove [S;] > [a(Cj',?,’z],i =0,...,2n. Clearly all the
stable sets cardinal numbers are either (a(Cf)/2] or Ja(Cf)/2|. Since no cardinal numbers
of two consecutive stable sets can be |a(CF)/2[ at the same time (provided that o(C)/2
is not integer), there exist two consecutive stable sets with cardinality [a(CE)/2]. Without
loss of generality we may assume [Sy| = || = [@(CF)/2]. hmod(k + 1) = 0 implies that for
each A; stable set in C} there will be at most one stable set A, such that A; N A; = @ and
A; U Az is & maximum stable set in Cf. Since |S;,| = [a(CF)/2], using the 3rd condition
we'll obtain that S;U S(s1ymed(ans1)(i = 0,2, ..., 2n—2) are maximum stable sets, Therefore
Si=%=..=5n1a0d Sy =85=8=...= Spn2. Thus, 85U S, U 53, is a stable
get with cardinality a(C¥) + [a(CF)/2]. This yields a contradiction.

Particularly for even cycles hmod(k+ 1) = hmod2 = 0, that is, the equality doesn’t hold.

Theorem 1: Consider the graph Cf. If mn > [a(C¥)/2](k+1), where m = hmod(k+1),

then
a(Cns1 % Cf) = a{Cans1) X a(CF) + [a(CF)/2] = [p(Cans1) X a(CE)].

Proof: We can assume that n is the minimum number for which the inequality holds.
Since if the Sy, i, .. . , San sets satisfy 1-3 conditions then for (n+k) we shall have 2(n+k)+1
sels So,.S';....,Sg.,&.;,sh.....sh_l,&awhichwﬂlahomisfy 1-3 conditions if without

2k
loss of generality to assume that (Sz,—; U S3,) is a maximum stable set.
Let’s notice that the inequality

&(Cani1 % CF) < a(Cant1) X a(CF) + [a(CH) /2],

always holds. To show the equality it’s enough to construct a stable set in the product graph
with vertices count equal to the right side of the equation.

Let’s denote vertices of Cf by 0,1,...,h— 1 numbers and consider the stable set {0, (k+
1),..0, (t = 1)(k + 1)} with cardinality ¢ = o(CF)(Fig.1).



30 The Stable Set Number for the Strong Product of Generalized Cycles

Figure 1: The vertices of the maximum stable set in Cff are marked in the picture.
The set is devided into two parts,

Now we can construct stable sets in C} satisfying 1-3. Thus we will obtain the required
stable set in product graph. Consider the following sets,

S0=1{0,... , ([t/2] = 1)(k + 1)},

S ={t/2A(k+1),..., (- D)k + 1)},

S3={-m,...,([t/2] - 1)(k +1) — m},

Sy={[t/2(k+1) —m,..., ([t - 1)(k+1) —m},

Spm-a = {—(n—1)m,...,([t/2) - 1)(k +1) - (n — 1)m},

Sr = {[t/2](k +1) — (0 — 1ym, .., (¢~ 1)(k +1) — (n — Iy},

San = {—nm,..., ([t/2] — 1)(k + 1) — nm}.

We take the numbers above by modh. One can verify that these sets satisfy the 1st and
3rd points. Clearly, the 2nd point is also satisfied provided that conditions of the theorem

hold.
With the help of these sets we shall construct a stable set with cardinality [t/2] + nt in

product graph,
2n
§={G,v)/ve S}
i=0

Hence, : .
a(Cams1 X C3) 2 a(Cansa) X a(CF) + [a(CF)/2).

4. The Strong Product of Generalized Cycles

Now let’s determine the relation between a(CZ, x C¥) and a(CP,), a(C*) numbers. We'll use
the following notations
Cmp = &CE), Tnp = mmod(p + 1),

nk = &(Cp), T = nmod(k + 1).
It is known

a(C3, X CF) < [p(CB) X a(CE)] = Cungns + [rmpttns/ (9 + 1)},
a(CB X CF) < [a(CB) X P(CY)] = Crmpns + [rasimp/ (k + 1),
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but from the other side we have,
a(CZ x C¥) > a(CT) % a(CE) = Gmpitns.
Thus,
Ompnk < (CE, % CF) < Cmpltns, + min([Tenpns/ (P + 1)}, [rnsmp/ (k + 1))

One can notice that Lemma 1 is & simple consequence of the inequality above, since if
Tmp = 0 0F Tpi = 0 then,
a{C?, x Cy) = a(CZ) x a(Cy).

The theorem below suggests a stronger lower bound:
Theorem 2: If omgrnx 2 [0nk/(p+ 1)](k + 1)Tmp, then

a(CE, % C¥) 2 ampink + [/ (p + 1) mpe

Proof: To prove the theorem it’s enough to construct a stable set in the product graph.
We shall construct ¢ = g, Onk-stable sets So,. .., 81 in CE graph, then shall decompose
each of them into p + 1 parts. Afterwards by constructing more ry,, stable sets in C% we
shall have m stable sets, Py, Pj, ..., Pm—1. Finally, we shall show that the required stable
set in the product graph is the following:

s="U BuBi= G}/ € ).
=0

Let’s try to decompose oy number into p+1 almost equal parts. It will be used to decompose
S; sets. Let

v = anmod(p + 1), then

nk = v)ons/(p+ 1)[+(p+ 1 = v) ome/(p + 1)].

Let’s define also a; numbers according to the equality above,

Oy =]a,.|,/(p+1)[.i =0,..,v—1;

o = lam/(p+1),i=v,...,p.

Clearly in that case, ang = éa‘. Suppose ! is the minimum non-negative integer satis-
fying the inequality,

_ (14 Do 2 [an/(p+ 1)](k + 1)rmp,

according to the supposition of the theorem ! < @y, Consider the following ani-stable sets
in Cy graph,

So={0,(k+1),2(k+1),..., (o — 1)(k+ 1)},

81 = {~Tuky (k +1) = Tty 2(k + 1) = Ty ..., (@ = 1)(k + 1) — T},

8= {2y (k4 1) ree, 206 +1) — 2rney.. . (0a = 1)(k+1) — 2rus},

:5:1‘: {—l‘l'nh {k 5t 1} = !rnhztk o 1] s lrllh seny {ﬂ'nl -— 1)(k + 1) — h‘,*}.

Sy = {~Iraky (E 4+ 1) = Iragy 20k +1) = Ity -y (s — 1)( + 1) = Iraa},

R = {~(14 1)rnky (k+1) = (14 1)rai, 20k + 1) — (0 + 1)rak, .., (e — 1) (K +1) - (I + 1)7ni}-
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Operations here are considered to be done by modn. Consider the elements P{;::
.S'o,....SMinthespeciﬁedurderandap]jteanhofmemmmp+1pms{aothal‘-" s
cavdinality is a;). We shall get Po, Py, .., Pipsiy-1 sets. Now let's consider the elcmmmm
% in the specified order and separate the first mp sets with cardinality [ans/ (P + nl
shom, We chall got Py, Pi,.. ., Fu—i steble sets in 'k granh X

To finalize the proof of the theorem it remains to show that :hemnstructedw:""sh“
stable set in the product graph. Itmﬁicest.uahowthat.mchseqmﬁalp.;-lsetsm the
cyclic sequence of Po, P, - .., Pn—1 8ets are pair-wise disjoint and the union of the p-+18¢ts 18
a stable set in C%, Consider any such sequence of set8 Pimad(n), Fli+1)mod(n): - * , Bli-rpymod(n)"
If P, and Py aren’t present in the sequence at the same time, then the statement 18
true according to the construction, otherwise the statement is implied from the definition of
number [ above.

Corollary 1: For every C%, and Cy generalized cycles holds,
a(CP, x C¥) > cmpans + min((ank/(p + 1)rmp [amp/ (k + 1)]rak)s

particularly,
a(CE x Cp) 2 oy + [ans/(k + 1)]rnx.

Proof: Clearly, it suffices to prove only the first inequality. If the condition of Theorem
Theorem 2 is satisfied GmpTnk = [@nk/(P + 1)](k + 1)rmp, then the proof of corollary 18
immediate, otherwise we have

Tk < [t/ (p+ 1)](k + 1)rmg,
hence

nkTmp 2 [Cmp/ (K + 1)](2 + 1),
applying Theorem 2 we get

a(Ch, % C:) 2 QmpOink + [a,,.,/(k +1)Jrae 2 Cmplenk +min([ene/(p+ Dlrmp: [ampf(k 15 1)}1‘,.3)

and the corollary is proved.
Corollary 2: If the following conditions hold

L.omgrnk 2 [ans/ (P + 1D](k + 1)rmp,
2.amemod(p +1) =0,

then
a(C2, x CF) = [p(CR) x a(Cp)] = Cmpltnk + [Fmpans/ (P + 1)].

Proof: Since a(CP, x C;"LJ < p(C2) x a(C¥) and a(CP, x CF) is a natural number then
o(C2, x C¥) < [p(CE,) X a(CH)]

Aceording to the 2nd condition, cnu/(p + 1) is an integer number and according to
Theorem 2

(C2, x C¥) > Cmptnk + [0/ (P + 1)]Fmp = Cmpni + Tmpnt/ (p + 1) = [0(CB,) X a(Cy)):
Corollary 3: If the following conditions hold

1.0mpTnk Z]ank/ (@ + 1)[(k + 1)rmp,
2.p+ 1 = rpyq, and g is a divider for an,
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then
al(CZ, % Cy) = [p(CR) % aCR)] = Complrnk + [rmparns/(p + 1)].

Proof: To prove the corollary it suffices to construct Fp,.. .Pt,,.m_,, <y Py sets
in Theorem 2 50 that the last rmp 5cts cardinal numbes sum 6 [Fmpome/ (7 | 1)) As iz
'I'hmremZaJISQMuwdlbedewmpoau:lmthssamewqymtnp+1partasothntt—thpan
has cardinality o;(i = 0,...,p). Let's make the following notations and define first rp,, g
numbers (Fig. 2)

v = o, mod(p+ 1), as g divides o,; and p+ 1, it also divides v, so we can define:

01510"1}'(?'1'l}[,f=o.---.”)’q—1;

“l"—“[ank!fp+1)]ii=9191'--lr~_1-.

Figure 2: A pert from graph CP, is shown. For ry,, consecutive elements first v/g are marked.
Those are elements for which a; =]an/(p+ 1). [ For the other elements a; = [on:/(p + 1)].

Teking into account that rmy is a divider for p+1, the remaining (p+ 1) —rmp 6; numbers
can be defined recursively a; = 8i—r,,,i = Tmp;+ - -, P

Having the definitions above for a; numbers, each of ¢ a,,;-stable sets can be decomposed
into p+ 1 parts. From these parts v will have cardinality Jon:/(p+ 1)[ and p+ 1 — v of them
[evas/(p + 1)] (since g is a divider for v and p+ 1 — v numbers). Finally, let’s take the last
Tmp Pj 8ets in Theorem 2 with cardinality a;(instead of [on:/(p+1)])i =0,...,Tmp— 1. In
that case we have:

P

5 -&=—-—[”“ 20k ) — gt/ (9 + 1))
2 W=y q *o+1

Consideralaonumber!ianheorem 2 to be the minimum non-negative integer number
misfying(l+1)r,.*2?_u ay(k + 1). This finalizes the proof of the corollary.
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