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Abstract

The paper is devoted to untyped functional programs, which are defined as equation
systems with separating variables in the untyped M-calculus. The semantics of such
programs is usually defined by means of the fix-point combinator Y. Previously, it was
proved that the semantics of such programs is invariant with respect to the fix-point
combinator. However, in this paper, we prove that this invariance is no longer valid
when the reduction strategy is fixed.

1. Introduction

An untyped functional program is defined as a system of equations with separating variables
in the untyped A-calculus [1, 2]. The semantics of such programs is usually defined by means
of fix-point combinator ¥. According to the theorem on the invariance of the basic semantics
[3], the basic semantics of the untyped functional programs that are defined by means of
two different fix-point combinators are equivalent in the following sense. If the result of the
application of one of them to some terms, (usually closed normal forms) can be reduced to
a normal form, then the result of the application of the other one to the same terms, also
can be reduced to the same normal form. However, from the current paper follows, that
if we fix a reduction strategy, then generally speaking this equivalence will not be valid.
We define and consider the class of so called active reduction strategies and the class of so
called refined active strategies. It is proved that for all refined active reduction strategies
that are not normalizing (i.e., that do not always lead to the normal form of the term if it
exists), there exist fix-point combinators for which the mentioned equivalence is not true,
The same is proved for not normalizing active strategies that are satisfying to a certain
natural condition.

In the last section of the paper we consider programs consisting of one equation. The
basic semantics of such programs can be defined in more natural and simpler way without
redundant terms that are needed in the case of programs with multiple equations. First,
based on (3, 4] it is proved that the basic semantics defined in this way is equivalent (in the
sense mentioned above) to the basic semantics defined in the usual way. Then, it is proved
that this equivalence is not valid when the reduction strategy is fixed.
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9. Preliminaries

In this section, definitions and results used in the following discussion are presented. All
here without proofs) can be found in [1]. First of all, we

definitions and assertions (given
define the concept of = term. Let V be a countahle set of variahles

Jeast set that satisfies the following conditions:

The set. nf tems A is the

1. IfzeV, thenz €A;
2. ]thMQEA, then (M1MQ}EA;
3. Iz €V and M € A, then (AzM) € A.

We will use the abridged notation for terms: the term (--- (My Mz) - - - My), where M; € A,
"k, k> 1, isdenoted as M - - My; term (Az1(Aza(- - (AzmM) - ))), Where M € A,

i=1,-
€V, j=1- m > 0, is denoted as Az;Z3- - - Tm.M.
Thenotiansofﬁ'eaandboundoommenoasofawriahleinatermand the notion of a frec

vaﬁableofamueinmdueedinsconmtionalm. The set of all free variables of &
term M is denoted a5 FV(M). A term that does'not contain free variables is said tc be
closed. The set of all closed terms is denoted as AL,

To show mutually different variables of interest zy,- - * , Zm, m > 1, of a term M, the notation
M]z1,-*+ s %) i used. The notation M[N, -+, N (or M[zy := Ny, -, Zp == Np]) denotes
the term obtained by simultaneous substitution of terms Nj, - - -, Npy, into the term M for all
free occurrences of variables zy, - -, Zm, respectively. A substitution is said to be admissible
if all free variables of the term being substituted remain free after the substitution. In what
follows, we will consider only admissible substitutions.

Terms M and N are said to be congruent (notation M = N), if one term can be obtained
from the other by renaming bound variables. In what follows, congruent terms are considered
identical.

The notion of S-reduction is defined as the following set of pairs:

B={((Az.Pa))Q, Plz:=Q]) | Qe Az eV}

A term of the form (Az.P[z])Q is called a B-redex (further, simply redex), and the term
Plz := Q] is called its contractum. The relation of one-step B-reduction (- »p) is defined os

follows:
1. if (My, M) € 5, then M; —p My;
9. if M; —5 M3, then for an arbitrary term M and arbitrary variable z we have:
1. MM; —p MM,
2. MyM —p MaM
3. Az. My —p Az.M;

Iti.seaay.tosee. that M; —g Mj means, that the term M, is obtained from the term
M, by replz‘mns an occurrence of a redex in the term M; by its contractum. The relation
of &rgdum:m (——) is defined as the reflexive and transitive closure of the one-step -
reduction, and the relation of S-equality (=) is defined as follows:
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1. if My ——5 M, then My =5 Mj;
2. if M, =g M;, then M; =5 M;;
3. if M; =3 M and M; =5 M, then M, =5 Ms;

In what follows, the one-step S-reduction will be referred to as simply one-step reduction, and
the B-reduction, &s simply reduction. We will also omit the symbol 3 in the corresponding
notations, i.e. the relation — g we will denote as —, the relation ——3 as ——, and the
relation =g es =.

Sinee the (-reduction is the reflexive and transitive closure of the one-step F-reduction,
from M —— N it follows that there exist terms Mp,---, My (k > 0) such that My = M,
My=N and M;_; — M, i = 1,---,k. Taking this into account, further, we will use the
term reduction not only in the sense of relation —— but also in the sense of a particular
(pussibly, empty) sequence of one-step reductions; i.e., saying that we have a reduction
M —— N, we mean the particular sequence of one-step reductions from term M to term
N.

Term that does not contain redexes is referred to as a F-normal form (further, simply a
normal form). The set of all normal forms is denoted by NF, and'the set of all closed
normal forms, by NF° A term M is said to have a normal form, if there exists a term
N € NF such that M = N,

It is known that every term M has one of the following forms:

M=Azy - zpzNy - N,

M=z - "zg.{A:I:P)QN] ==+ Ny,

where z, 2, €V, i=1,-+-,k, k20, LQ,N;€A, j=1,---,n, n > 0. A term of the first
form is called a head normal form. The set of all head normal forms is denoted as HNF., It
is said that the term M has a head normal form if there exists a term N € HNF such that
M = N. It is known that NF ¢ HNF, but HNF ¢ NF.

Church-Rosser Theorem.

w If M »— M; and M —— Mj, then there exists a term N such that M; —— N and
M; —-— N.

b. If M; = M,, then there exists a term N such that M; —— N and M; —— N.

Corollary of Church-Rosser Theorem.
a. If M = N, where N is a normal form, then M —— N.
b. If M = N; and M = N,, where /V; and [V, are normal forms, then N; = M.

Fix-point Theorem. There exists a term Z such that, its application to an arbitrary term
M, yields a fix-point of the term M, i.e., M(ZM) = ZM.

A term Z that satisfies to the condition of fix-point theorem (i.e. for any term M,
M(ZM) = ZM) is called a fix-point combinator.
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To formulate the multiple fix-point theorem, we introduce the following notation:

< My, Mo >= Az.zMy - My,

wherez€ V, Mi €A, s ¢ FV(Mi) i=1,-mn21;
Ul = AZy, 00y Tn-Tiy

wherezjev,j#kﬁ'ﬂjﬁzh k‘j‘=1,"‘|ﬂ|ﬂ21;
B = Az.zlUf,

wherez€V,1<i<n,n=1
Multiple Fix-point Theorem. Let My -+ M, (n = 1) be arbitrary terms, Z be a fix-point

binator. Then,
h MIE .- IZ = IZ,

12 = PMZ(\z. < My(P['3) - (P1z), "+, My(P7'2) - (Prz) >)),

3. Untyped Functional Program

Untyped functional program P (see [2]) is an equation system of the following form:
fi=Mlfi, -, fa),

R )

fa=Malfr, =+ ful,

where fiEVs ‘#j#fliéfjs MU-I“‘I'I’I]EA) FV{MUI"H)'“]] = {fh'"lfn}'
i,j=1,---,n, n> 1, It is considered, that the main equation of the program P is the
first equation of the system. Let us fix a fixpoint combinator Z and consider the following

solution of the system: )
(Lf 1" Lf)l

where

L:FE P‘"(Z{)d < Ml{Pf‘z!""P:zlr'"IMN[P;lx-"WP:x] >)]|
i=1,--+,n. The first (main) component of the solution, i.e. the term Lf is referred to
as the fix-point semantics or the basic semantics of the program P, corresponding to the
fix-point combinator Z. Let us define the set Fiz(P, Z), corresponding to the semantics L7
as follnws:

Fiz(P,Z) = {(Q1,"*, Qs Mo) | LFQ1 -+~ Qe —=— Mo, Q, -+, Qe, My € NF°,k > 0}.
In [3] the following lemma on the equivalence of fix-point combinators and theorem on
invariance of the basic semantics are proved.

Lemma on the Equivalence of Fix-point Combinators. Let Z and Z' be arbitrary fix-
point combinators, M be a term with a fixed occurrence of a subterm ZL (L € A) and M’ be
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the term that is obtained from M by replacing the above-mentioned occurrence of subterm
ZL by the term Z’L. Suppose also that free occurrences of variables in the corresponding
wvecurrences of subterms ZL and Z'L are not bound in terms M and M’, respectively. Then,
My is the normal form of term M if and only il Mj is the normal form of term M'.

Theorem on Invariance of the Basic Semantics. For any two fix-point combinators
Z,, Zy and eny untyped functional program P we have:

Fixz(P, Z;) = Fir(P, Z),

ji.e. the set, corresponding to the basic semantics is invariant with respect to fix-point
combinator. ‘This means, that if L; and L; are the semantics of the Untyped functional

program P, corresponding to the fix-point combinators Z; and Z;, respectively, then for any
terms @y, - -+, Qx, My € NF? (k 2 0):

LlQl“'Qt_'_'MU#L!QI"'Qk;'-*MO (2)

4. Reduciion Siralegies

A reduction strategy is an arbitrary mapping S:A — A such that for any term M,
M —— S(M). According to the corollary of Church-Rosser theorem, if M € NF, then
M = S(M). Reduction strategy S is said to be one-step, if for M € A\ NF, M — S(M).
The reduction M —— N is called an § reduction, if N = S"(M), where n > 0 and S™(M) is
defined as follows: S°(M) = M, S**(M) = S(S*(M)), k > 0. For § reduction M —— N,
we will use the notation M —~ N, and for one-step S reduction M — N the notation
M 25 N. Reduction strategy S is said to be normalizing, if for each term M, having the
normal form My, we have M M,

Let S be a reduction strategy, Z;, Z; be fix-point combinators, P be a program of form
(1) and L,, Ly be the basic semantics of the program P corresponding to the fix-point
combinators Z; and Z, respectively. Then, according to the theorem on the invariance of
the basic semantics, for any terms Qy,- -+, @y, My € NF° (k > 0):

L@ Qr == My & LoQy <+ - Q. —— My

A question arises: does the same thing hold for the reduction strategy S, i.e. is the following
valid?
LiQy-+- Qu — Mo 4 LnQs -+ Qe =0 My (3)
Reduction strategy is defined as an arbitrary mapping with the only constraint that this
mapping should be a subset of the S-reduction relation. Hence, it is easy to construct an
artificial strategy, for which (3) is not valid. In the view of this fact, we will consider the
mentioned question only for classes of natural strategies, which we ere going to define now.
Let us define the class of active reduction strategies and the class of refined active re-
duction strategies. All strategies of these classes will be one-step strategies. Let A be an
arbitrary set of terms, containing all normal forms, i.e. NF C A C A. The active reduction
strategy ASy is defined as follows. Let (Az.P)Q be the leftmost redex of the term M. Then,

1. if Q € A, then ASA(M) is defined as the result of the one-step reduction of the term M,
upon which, the leftmost redex (Az.P)Q is contracted (i.e. replaced by its contractum);
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9. otherwise, if @ ¢ A, then ASa(M) is defined as the term that is obtained from M by
replacing the considered occurrence of the subterm Q by ASA(Q)-

Thsmﬁnedactivamductimmmﬂs.ﬁgindaﬂmdufonm. Let (\z.P)Q be the
leftmost redex of the term M. Then,

1. ifQ € Aorz ¢ FV(P), then ASa (M) is defined as the result of the one-step reduction
of the term M, upon which, the leftmost redex (Az.P)Q is contracted;

2. nt.hm-wiu,il'QﬁA.theuASa{M)isdeﬁneduthewrmtbniisnbmnedhnmMby
mplaxﬁngthuoonsidemdmofthambterm@byzwﬁm}. _

The point in the second definition is that, if the subterm P of the leftmost redex (.\:r.P}Q.
donotooutainﬂseoecmrmoesofthevnﬁnblex,thenthetachmbsignomdsndtherem
no sense in reducing it. So in this case the redex (\z.P)Q is contracted. The active strategy
ASyp we will denote by ANF, the refined active strategy ASRyp by ANFR, the active
strategy ASENF by AHNF and the refined active strategy ASRanr by AHNFR.

5. Non-invariance of the Basic Semantics in the Case of Active and Refined
Active Reduction Strategies

In this section we introduce theorems 1,2 and their corollaries that show the non-invariance
of the basic semantics for the active and refined active reduction strategies.

Theorem 1 If the reduction strategy ASa(NF € A C A) is not normalizing and A does not
contain any term of form Jy.(Az.P)Q (z,y €V, P,Q € A), then there exist a program P,
fiz-point combinators Z;, Z and terms Ny, -++, Ny € NF® (k > 0) such that if I, La are the
basic semantics of P corresponding to the fiz-point combinators Zy, Z,, respectively,
then LNy - -- Ni =52 Mp € NF, but the ASa reduction of the term LyNi - -+ Ny continues

infinitely.

Corollary of Theorem 1. For the reduction strategy ANF (AHNF), there exist a pro-
gram P, fix-point combinators Z;, Z; and terms Ny, --, Ny € NF? {k 2 0) such that if Ly,
L are the basic semantics of program P corresponding to the fix-point combinators Z;, Z3,
respectively, then LyN; - - Ny 25 My € NF (LyN; - - Ny 28 M, € NF), but the ANF
(AHNF) reduction of the term Lg/V; - - - Ni continues infinitely.

Tl}eomm2 If the reduction strategy ASRA(NF C A C A) is not normalizing, then there
mt‘amwnP,fbpaintmmbhatoraZ;,ngdt«maNl,---,N*ENF" (k > 0) such
that if L1, L; are the basic semantics of P corresponding to the fiz-point combinators
Z,, Z,, respectively, then LyNy--- Ny My € NF, but the ASRa reduction of the term
L3N; « - - N} continues infinitely.

Corollary of Theorem 2 For the reduction strategy ANFR (AHNFR), there exist a
program P, ﬁx-pmntcombma.tors Z,, Z; and terms Ny,---,Ni € NF° (k > 0) such that if
Ly, L; are the basic semantics of program P corresponding to the fix-point combinators Z;,
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2y, respectively, then Ly Ny - -- Ny 2558 M, € NF (LN, - .- Ny 2258 M, € NF), but the
ANFR (AHNFR) reduction of the term L,N; -- - Nj continues infinitely.

To prove the theorems 1 and 2 we need the following lemmas 1 and 2, which are given
here without proof for the sake of brevity.

Lemma 1 If the strategy ASs (NF CACA) is not normalizing, then there ezists a
fmmmmmzmmkrmymwmmdmmP and any terms

+Ne € A (k 2 0), if L is the semantics of the program P corresponding to Z, then the
AS& radmticm of the term LN, --- Ny MHM

Lemma 2 If the strategy ASRy (NF C A C A) is not normalizing, then there erists a
ﬁz—pow combinator Z such that for any untyped functional program P and any terms
Ny, -+« ,Ni € A (k 2 0), if L is the semantics of the program P corresponding to Z, then the
ASRa rednctian of the term LN, - - - Ni conlinues infinitely.

Proof of Theorem 1. Let ASp(NF C A C A) be & not normalizing reduction strategy
such that A does not contain any term of form )uy.{.lz.P)Q (z,yeV, P,Q € A). Let P
be the program f = I, where I = Az.z and let Z; =Y = (Ah.(Az.h(zz))(Az.h(zz))). In
this case, 1tmbeatmghtforwardlywrlﬁedthat1££;mthesemanumofthepmpm
Pcarrespondmgtozl,thmh =% I. On the other hand, according to lemma 2, there
exists a fix-point combinator Z; such that, if L, is the basic semantics of the program P
corresponding to Z3, then the AS, reduction of the term L; continues infinitely. Theorem 1
is proved.

Proof of Theorem 2. The proof of theorem 2 is similar to the proof of theorem 1 with
the difference, that as Z; the fix-point combinator Z; = © = (Azy.y(zzy))(Azy.y(zzy))) is
taken and instead of lemma 1 the lemma 2 is used .

6. The Basic Semantics of Programs with One Equation
Consider, the following program P that consists of one equation:

[ = M[f]. (4)
Let Z be an arbitrary fix-point combinator. In this case the term
K% = Z(Af.M[f)). (5)

is a solution of the equation (4). Let us prove the following theorem 3 which states that the
term K# is equivalent to the basic semantics of the program P in the sense of (2).

Theorem 3 Let Z be an arbitrary fiz-point combinator, P be the program (4), L? be the
basic semantics of the program P corresponding to Z, and K? be the term (5). Then, L% is
equivalent to K% in the sense of (2).

Proof. In [4] it is proved that if Z = Y = (Ah.(Az.h(zz))(Az.h(zx))), then the solution KY
is equivalent to the semantics LY in the sense of (2). In the view of the lemma on equivalence
of the fix-point combinators and of the theorem on the invariance of the basic semantics, it
is easy to prove that this equivalence holds for arbitrary fix-point combinator Z. Indeed,
according to the lemma on equivalence of the fix-point combinators, K is equivalent to K¥
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L%, Theorem 3 i8

2

i of (2 .Aenlmm.em};it:onednbc:nre,J‘f"iaequivnlem.tf.oi'.'jrr
t(.::ntae:::;;m Emnmvnmnee of the basic semantics, LY is equivalent to
'Ihl;ins into account this fact, it makes sense to define the basic semantics of p::s:?:?:
consisting of one squation, 85 the torm (5). Nato, that from the theorem 2 :m!!'._i!- ﬁ):_
follows, that the semantics defined using (5) will also be invariant with respect to the
pointmmbmminthemeofthethmmmoninmﬁmonhabosicfmmc& ;
However, as it follows from the following theorem 4, thesetwo definitions are no longe

equivalent when the reduction strategy is fixed. This fact is proved for the reduction straregy

ANFR. 2
Theorem 4 There ezists an uniyped functional program P, consisting of one at_;uaﬁon, ﬁl‘
point combinator Z and terms Ny, - -+, Ni € NF° (k > 0) such that if L is the basic semantics

the basic semantics of

afﬂwmnmenupondingtoquﬁmdinthemudwdeis
ﬁupmgmumndimtoquﬁndamdingw(ﬁ),ﬂwnKM---
but the ANFR reduction of the term LN; -- - Ny continues infinitely.
Proof.  Before proving theorem 4 let us introduce some conventional notations.

. Terms T = Azy.z and F = Azy.y are used to represent the logical values true and false,
respectively. Let B, M and N be arbitrary terms, then by the expression if Bthen M else N
hdmotedthethMN.Itinmsytosm,thatifﬂ:T,thenBMN=Ma.ndifB=F-
then BMN = N. Let us define terms for representing numbers. For every number n 2 0,
the term In is defined as follows:

fol = Az.z, 'n + 11 = Az.2Fnl

Ni BER} M, € NF,

These terms are known as Church numerals. We will also use the following notations:
P~ = \z.zF, Zero= Az.2.T and I = Az.z.

One can show, that for any number n > 0, P~fn + 11 = Inl, if n = 0, then Zero [n! =T, if
n> 0, then Zero Inl = F and that for any term M, IM = M.
Let Z = Ah.I(Az.h(zz))(Az.h(zz)) and let P be the following program:

f = M[f] = Mn.if (Zeron) then [0 else f(Pn).

In this case, it can be proved that if L is the basic semantics of the program P corresponding
to Z defined in the usual way and K is the basic semantics of the program P corresponding
to Z defined according to (5), then KT0! 4¥ZF 0], but the ANFR reduction of the term
L'0! continues infinitely. Theorem 4 is proved. ;
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