P I e e

Mathematecal Problems of Computer Science 31, 130-141, 2008.

On One Approach to Optimization of Recursive
Function Computations

Artashes K. Ghazarvan

Institute for Informatics and Automation Problems of NAS of RA.

E-mail: artashesgfigmail.com

Abstract
theoretical justification and the development of a new

The goal of this work is the " :
qﬁlmh:'a;llnl synthesizes programs ealenlating multivariate recursive functions and
systems of functions. 1o

The current version of the optimizer processes a wide category of u}ult
systems of recursive functions using two algorithms — stack recursion optimization and

combined total replacement optimization.
The results of this work can be used in development of packages, calculating the

systems of recursive functions, modeling discrete multivariate systems with complex
interconnections, solving boundary-value and ficld-value problems, etc.

1 Introduction

The recursive description for a wide class of algorithms has a major convenience for de-
velopers, since the recursive approach allows a very compact description. In addition, the
recursive description approach is more conformed to human abstract way of thinking, which
builds construction of different levels and sets up relationships between them, unlike the it-
crative approach when it becomes necessary to describe all steps of algorithm consecutively,
to solve the task.

However, the majority of the existing programming languages do not support convenient
facilities for recursion organization. As a result, the programs, directly corresponding to
recursive description, turn out to be slow, spending a lot of memory and are difficult to
debug.

There is also a whole class of recursive descriptions, the direct implementation of which
simply will not work on most of high-level programming languages. For instance, consider
the following recursive description:

0 il oy =0;
Flay) = { F(0, F(xy, 22)), otherwise;

Depending on the way the grammatical parsing is implemented for a particular compiler,

on argument x; ¥ 0 and arbitrary z; the function F(x),z3) will either always return 0,

or the program will “hang up” until the program stack overflow and emergency stop. For
example C/C++ compilers on this example will “hang up".

130

A. Ghazaryan 131

There are systems, which use the ideology of the so-called “lazy caleulations” which
. ean deal with such tasks. This approach is used in functional programming languages (for
exarmple: Mathematica by Wolfram Research, Haskell), but in essence it cannot be fost.
Moreover, the functional languages do niot guarantee the order of operations execution. This
iy Liisl Uiee are difficultics with the input /output cperstions; with ealling native OS
functions (as they often require Lhe right calimg order hecause of the side eﬂa;:‘m)‘ So the
interaction with the “outside” world is quite complicated.

The approach proposed in this paper allows not only to combine the comfort of recursive
description with the efficiency of iterative approach, hnt also to expand the class of soivabie
tasks, using the theory of recursive functions, in particular. some of the results of the “fixed
point” theory.

Using & combination of sutomatic program generation techniques, the stack recursion.
the “fixed point™ theory, the package FARECO (stands for FAst RECursive Optimization)
were developed.

Currently the FARECO package is at the stage of testing and approbation at the Insti-
tute for Informatics and Autometion Problems of the Nationul Academy of Sciences of the
Republic of Armenia.

2 Theoretical Justification

Let us define the class of recursive programs, which we deal with. To do this, let us first
give a few definitions.

Let’s introduce some notation. Let f be an n-place function with the definitional domain
p*=D2D®&...D and the range domain D. It is convenient to introduce some undefined
element and denote it by w. Let us also denote D* = D Uw, and supposc that » € D.
Then any n-place partially defined function f, which maps D™ into D", can be regarded as
a completely defined function. If f is not defined on some n-tuple (a;.a,...a,) € D then
f(oy,02,...00) = w.

Let's call the n-place function f : [(D*)" — D] efficiently computable (or just com-
putable), if there exists an algorithm which computes it, i.e. there exists such an algorithin
A which accepts the vector Z = (z;,%3,...%,) € DT as an input, and the calculations ac-
cording to that algorithm should finish after a finite number of steps and produce the result
1(2).

All computable functions can be constructed [rom a limited set of base [unctions. namely
a constant zero function 0(Z) = 0, one-place increment function S(z) = z + 1, the function-
selector C(i, @) = z;, and operations of superposition, primitive recursion and minimization.

All functions, which can be constructed from the basic functions and the above men-
tioned three operations on finite number of steps, are called partially recurswe. II such a
function is everywhere defined, then it is called a general-recursive function. If the function
is constructed without the operation of minimization, then it is called a primitwely-recurswe
function.

For further discourse, we need a notion of partial ranking (3], that will be denoted by
C. To partial ranking corresponds “less definite than or equal” relation. We also suppose
that for all d € D™ it is correct that w C d and d C d. Now it is possible to introduce
the concept of monotonic functions. We would like to say that the n-place function [with

' the definitional domain D} and the values domain D is monotonic if from z € y follows

| TILE oy e e

o to Optimizati of Recursive Fusctios Computations

132 Oo Oue App

: _y € Dr. Hence, the pastial ranking §
B iiont depain DY, and th vaes domain D

1 fCgif AT g(® forall TE Dy

2 f=g it fIF) =glF) forall T€ U7,
us call functional the operations vu

3 : concept ctional. Let

Ned ki'nm &m‘ru a mnﬂo::uf.:hn!‘:ah functions as its argument or input and
functmhm:m The functional T on the set {DF — Dj] maps the st of functions from
DS+ D to itself, ie rukumubitm}-mmmlcfumimflhax mn;sD;‘_mmD;
[pr — D3] 'pr‘;ducsm“hﬂ monotonic function 7(f) that maps Df into D3,
g of “fired point” and “the least fired point™ for continuous

functional. fanctional over the set (D — D3] We say that the function
felDt— lillﬁ i:tll:;nd point of r if 7(f) = f, ie. 7 maps £ to itsclf. If £ is the fixed
poinio}randlj';gfwmynthﬂﬁxﬁdpoimgoff then [is called the least fixed point of
:, Finally let us now formulate the S. C. Kleene First Recursion Theorem [10], which is the
basis of FARECO Optimizer.

heorem 1 The S. C. Kleene First Recursion Theo
.ﬂrﬂ _ﬁmctionaa. Then there erist a computabie function f that is the
T

L.rNh=1
2 ifr(h)=h, then fCTh
The strength of this theorem’ consists in the following: the recursive definition of a very
general type can be represented by an equation of the Lype
F(3) = 7[F)(2)

where T - is some functional. The fixed point theorem asserts that there always exists a

computable function that satisfies that equation.
Now we can go directly to the description of the ideas which underlic on Optimizer. We

will call a recursive definition or a recursive program such a program over a set) if it has
the form, that:

for monotonic functions [and g
can be easily defined:

rem, [10]) Let = be a contmu-
least fired powt of

F(&) < 7|F|(2)

where 7{F|(Z) is functional on set [(D*)" — D*] constructed with the help of superposition
of base functions and predicates and the functional variable F.

Let us describe the process of function calculation, which is defined by recursive program
as follows:

'As a matter of fact, the First Recursion Theorem was proved for compttable functionals. However, it
15 not difficult to obtain the above given formulation by means of combining the B, Knaster's "fixelement”

theorem (8] with the fact that the computable functionals are continuous. This moke s bridge between the
notions of continuous functionsl and its particular case - computable functional.

R ———

A. Ghaaaryan 133

& 1. The first term & is F(Z).
N -
- 2, Theterm t;;; should be constructed from #; for each 1 2 Dwith the heip of the following
: operations:
e Substitution: repiace some occurrences (we shail see it below) of £ 1 term ¢
simultaneously by {F].
. » Reduction: replace the basic functions and predicates by their values every time.

whensver it is possible, until the further simplification will be impossible.

The above described computational sequence terminates, and the term Iy is the last in
. this sequence if and only if #; contains no occurrences of F ie. L is an element of the set

=D,

The term sequence £5,t3, t3. .. defined above is called computational sequence or compu-
tation for F(d). :

We will say that the rules for calculating C are rules for caleulating the fixed point. if
for each recursive program over P on the set [

Cp(d) = fp(d) for all d € (D)

In chapter 5 of Z. Manna book{3] one can find 6 substitution and reduction rules. as well as
the advantages and disadvantages of each of them, but here we are going to consider only une
rule - the full substitution rule. It consists in replacing all oceurrences of F simullaneously.

Let us illustrate the full substitution rule by an example. Let us consider the Lerm
consistng of a fuctional variable and arguments:

F(Z,F(Z,9)) + F(F(Z.9), F(Z,9)

According to the [ull substitution rule all occurences of F are to be replaced: E(Z.E(Z.9)+
E(E(Z,7), E(Z. 7))
In Manna’s book one can find the proof that the full substitution rule is the rule for

calculating the fixed point (see the theorem of J. Vuillemin, on the “safe” rules).
- The full substitution rule is used in FARECO Optimizer as one of optimization major
steps. The output of that optimization algorithm is a fixed point of the source recursive
definition. This very step can significantly enhance the class of problems which can le
processed by the Optimizer.

; Another, not less important optimization phase increases drastically the speed of cal-
‘culations. That phase is the stack recursion optimization. The general idea of the stack
recursion oplimization method and its mathematical justification have been developed by
Prof. Hrant Marandjian and described in [1]. That idea is the following: all recursive com-
putations require values, calculated on the “previous” arguments, and often the values of
computations on some arguments are calculated more than once, although there is no need
in such repeating computations. Correct computation orgamzation, which elumimnates such
unnecessary computations can save a lot of time and memory. Let's explain this on an
example of a well-known Fibonacci function:

Flz—=1)+F(z-2); ifx;i;
F {$)={ 1:(= hglas ::ul.::e‘;utise;

Let us examine the calls tree of Fibonacci function on argument 4 (look Fig. 1).

of Recursive Function Computations

134 On One Approach to Oprimizatica

Fig. 1 _
haﬁgumineachmrrespcudinslothe number of recursive
that the computation procedure is repeatedly called on those
ted earlier. The table with the numbers of calis on each

The tree has 9 vertices wit
procedure calls. Easy to see,
values, which were already calcula : Y
argument for the initial argument equal to 4 is the following:

Point Calling
2

o~ X]
Ll - T

If consider it natural that for each argument the program should be called only once,
then from © calls of Fibonacci function on argument 4, four calls are unnecessary. Thus,
if organize the calculations in such a way that the extra calls do not occur, it is possible
ta obtain very serious gains in computation speed and considerabic memory savings. The
memory savings are also very significant achievement in the recursive calculations because
cach recursive call requires retaining the current call context (current state of the processor's
registers, etc.) and a new context should be created. For deep recursion some functions
are simply not computable due to stack overflow, i.e. because of technical rather than
mathematical complexities. The essence of the method is to organize a special caleulation
process, according to which the calculated values are stored with their arguments. Before any
call the algorithm verifies the existence of the result of function computations on the proposed
argument and only in case of absence of the last, the real calculation starts, Otherwise, the
previously calculated value is immediately returned as a result. The Optimizer generases
special execution blocks for each recursive function call which provide the stack recursion
optimization. For this optimization method there exists the proof of correctnoess.

The current version of the FARECO Optimizer takes advantage of these two principal
ideas and also uses some simpler, but, nonetheless, quite useful techniques. One of these
techniques is the realization of arbitrary types of arguments, based on “tuple” container
from BOOST library. This possibility is relied on the following confirmation: while most
theoretical assumptions are based on dealing with integer arguments, it is easy to show that
more complex arguments can be used - those that are constructed of combination of a simple,
built-in types, and these simple ones - by coding of integer numbers (see Overflow algorithin

(7).

A. Ghazarysn 135

-3 Optimizer Description

" The Optimizer is an executable module which is written in C++. It uses standsard librarics
' BOOST and STL, as well a8 GNU Bison and GNU FLEX utilities. Without auy change
of zouree code the Optimizer can he compiled as for 08 Windows XP / Vista naing Visnal
C/C++ compiler as well as for Linux using GCC compiler. i
The general Optimizer structure is presented on Fig. 3

As an input the Optimizer accepts a settings file. It contains the names of the files with
recursive functions descriptions written on the subset of C/C++, some seltings associated
with the optimization level for each function, es well as some auxiliary settings necessary
to instruct the Optimizer to generate the caller functions, the calls counting subsystem. the
timing subsystem. The example of such file is given below: :

possible options:

timing = 1 - need timing |counter = 1 - need counter of calls
no = fname - no optimize |sr = fname - stack_recursion only
ts = fname - full substitution |mf = fname - master function

input = file - input file name

input = fib.txt

gr = F

mf = F

timing = 1

counter = 1

The current. version can perform the stack recursion optimization and the total replace-
ment optimization combined with the stack recursion optimization. The number of functions
is not limited by the system. The depth of recursion is limited only by the program stack,
which can be configured with the help of appropriate compiler options. Referring to the sub-
set of C/C++ let us explain what is meant by an example: let us consider the Ackermann
function Ack(m,n).

n+1 Hm<u
Ack(m,n)=14¢ Ack(m-1,n) ifn=0 Fig. 2
Ack(m - 1, Ack(m, n - 1))

Let us write it as follows:

int Ack(int m, int n)
{

P W TR e

136 mwwdedWFmﬁantm

i (<=0 { return o*1; }
if (g==0) { returz Ack(z-1,1): ¥
alse { return M:k(ri.l:k(l.n-l)); }

b2
-« tisting is fully consistent with the syntax of C/C++. The only requirement for such
a ﬁn’pﬁﬁiﬂ*m body of a function should consist only ?l’ mmtmuem like this:
i.[(mnd}{c-.h-l-}...if(cmﬂ){c-i-l'-} and else{c++}. The body of “il's” and “else” blocks can
-apsulate any correct in terms of the C/C-++ syntax code and that code should corrmily
compile. It is also possible to use special comments, which are transparent for C/C++
compiler but instruct the Optimizer to place the code within that commients verbatim into
output. This is very handy and can be used to define new types within the functions

definition files.
/18

class Int
ook

1AL
Int Ack(Int m, Int n)

troduced a new type Int instead of the existing basic type it and

Easy to see that we in

both optimized and not optimized source codes can be compiled and executed. There are
minor peculiarities about some mandatory functions which should expose such classes. At
the end of next session this peculiarities will be shown up.

Once the configuration file and the files with the descriptions of functions are prepared,
the Optimizer can start. As a result it produces a header file which should be included into
a user’s program. Then the optimized functions can be called cither directly or through
special caller functions, which include a call counter and a timing subsystem. In majority of
cases, it is convenient to use it, but if it is necessary to call directly the optimized function,
one should refer to the function with the same name and signature as the function in the

input file.

4 Results of Experiments

In order to examine the optimization abilities of FARECO Optimizer a set of experiments
were performed. In this section the results of comparisons of execution time and the number
of calls for optimized and not optimized primitively-recursive function (Fibonaccei function);
general-recursive function (Ackermann function) and “hanging” function will be provided.

4.1 Fibonacei function
Fibonacei function is specified by the following recursive description:

Flz-1)+F(r-2); ifx; L
1; otherwise;

F(x) ={

The C/C++ description which plays at the same time the role of input for Optimizer is the
following: .

int F(int x)

e {

B it (x<2) Cretumi;}

! else { int ret = F(x-1) + F(x-2); return ret; }
¥

The source function as well &s optimized by stack recursion
executable modules and executed on the same arguments.
Two indicators were chosen for consideration

algorithm were compiled into

the number of recursive calls and the

eomputation time, spent on each argument. Fig. 4 shows dependence of the number of calls
upon the argument. Here x-coordinate is the argument value and y-coordinate is the number

of calls given in logarithmic scale. Fig. 5 shows dependence of the computation time (in ms)

upon the arguments. For this figure both coordinates are given in logarithmic scale.

Fig. 4.

.
al‘lv 22
Wi 7
5l -
r -
L -
= - Ll Ml - » =
em — i
])] 0]

Calls numbers of not optimized and optimized functions
(circles - not. opt., squares - opt.

)

§ § 8 5 %
L]

Fig. 5. Computation time of not optimized and optimized functions

(squares - not opt., circles - opt.)

Using “Mathematica” package the fitting formulas were constructed. The rough outline

of that fitting is presented below:

Not opt. calls

Opt. calls

Nol opt. time

Opt. time

0.13z°

z+1

0.12z*

0.22z

Figures and formulas clearly show a substantial acceleration of computation time. and

the difference in the calls number speaks about significant memory savings.

L T -

3= mmswnwdwummcmwm
1

42 Ackermaun function = .
ion is a simple exam of computable functions, which is not a primi-
mAm ﬁ.mmm‘ m:n:n.mﬁwin:;!rnumbﬂsumnumdmumsapmiti\p
i “f:‘m is growing very quickly. For example, the number of digits in decimal
s Tlns ol ‘4‘::(1'.-5} s s bis.l.hl& it repeatediy exceeds the m.unba ol atoms in the
e aniverse. The precise analytical values of Ackermann functions for the arguments
vlthinthelimiudiﬂ--l]mmdinthebnmuuhlc:

[wm]o0 1 2 3 4 |
a1 23 65,18 !
1 |2 35 13 6553 '
2 gy Ay Ay
3 lases a6 -3
l4 |5 6 11 125 ™" _3

Ackermann function the optimized and not optimized versions were nlsn‘wnst:ucled.
Th::;riminti;:n was done by the stack recursion ulgunthm As in the previous case the
differences in computational time and calls count were exanuw_ed, '

Two additional sets of Ackermann function values, optimized by different algorithms,
were constructed. One optimization was done by the stack recursion algorithm and the
other - by the combined full replacement and the stack recursion algorithm. For this case
the execution time difference was examined. .

In order to eliminate the problem of the function fast growth the value of the function
can be taken by modulo of some prime number. For figures below prime number 91 was

chosen.
The calculations times for not optimized version of Ackermann function and optimized

by stack recursion algorithm version are presented on Fig. 6.

S

-

-
-

(] 0] - - = -
Fig. 6. Computation time of not optimized and optimized functions
(diamonds - not opt., squares - opt.)

It is obvious that this figure is very simular to the corresponding one for Fibonacei func-
tion. The figure for the number of calls is also virtually the same as the corresponding one
for Fibonacci function, so it is not presented here for space saving purposes.

Fig. 7 presents the calculation times for combined algorithm and stack recursion algo-
rithm. This experiment was performed to show that the combined algorithm does not worsen
the calculation time, while, as it was shown in Section 2, the class of solvable problems has
been widened.

[A. Ghezaryan 130

’ //
e

I R

i
1=

Fig. 7. Computation times of combined algorithm and stack recursion algorithm
(circles - combined, squares - stack rec.)

Both figures use logarithmic scales.

4.3 “Hanging” function
Let us examine Lhe following function:

: 0 if(m=0)
¥ (min) “{ F(0,F(m,n)) othervise;

On C/C++ this function will be writlen as follows:

int F(int m, int m)

{
if (m==0) { int ret = 0; return ret; }
else { int ret = F(0,F(m,n)); return ret;}

Execution of this program on any arguments, with exception of m # 0 leads to “hang”.
It will be so because the C/C++ compiler requires for all arguments of executing function
to be known al the moment of execution. If the argument. is a function then it should he
calculated. Hence, the calculation of F(m,n) requires to calculate F(0, F(m,n}), which in
its turn requires F(0, F(0, F(m,n))), etc. Thus, the computation will never end.

If this function is optimized by the full replacement algorithin, then the result will be
the fixed point of that function and calls of optimized function on arbitrary arguments will
give Lhe expected 0,

The main difference between the current approach and the one, described in [2] and [11]
is that this implementation of the Optimizer uses the [ull replacement optimization strategy
in addition to the stack recursion optimization. As it was shown in Theoretical Justification
section this approach significantly expands the class of problems that can be solved by the
Optimizer.

This implementation allows not only to integer arguments for functions. but also arbitrary
simple types such as double, char, predefined STL containers such as strings. vectors and it
also allows to define the developer’s own types, by defining the corresponding C++ classes.
That class can have an arbitrary complexity. The only requirements for the class design are
the defined copy constructor, operators less (<), equal (==) and stream inserter (<<). The
last two should be defined outside of the class definition scope.

The architecture of data structure of the Optimizer was designed to allow the parallel
computations as well .

140 Oz Ove Approach demmet'mm

4.4 Summary . s
According to theoretical prediction which is confirmed by experiments. the Optimizer

o considerably accelerates computation of recursive functions; |
o expands the class of probiems, solvable without additional effort and without much ;
1

computational overhead;
. there are some difficultics sssociated with the introduction of fctitions vari l
.blug?n?!hrmctim into a system of recursive equations. Currently the Optimizer does not
recoguize such cases. But this does not diminish its value, as these problems also cannot be
in usual way. :
”I\;dsi;u;ice‘s theorem [9] it can be easily shown that the problem of whether a given
computable function contains fictitious variables or not, is recursively unsolvable. In some
very simple particular cases the occurence of fictitious variables or functions can be detected
via analyzing the given function definition grammatical structure. :
Nevertheless, we suppose to develop the Optimizer in this direction. It seems promising

to implement sciue Xind of “lazy” computations from the world of functional programming,
but without an undetermined computations order.

5 Future Optimizer Development

Two ways of Optimizer development are planned. One way is computation distribution and
parallelization, which can accelerate computations in many cases. Another way is expanding
the class of tasks the Optimizer can deal with. So far, more priority has the first way.
However, further research will also be conducted in the direction of extension of problems
class,
The next version of the package, which is currently under development, is supposed to
be parallel. It is expected that this will also expand the class of solvable problems, because
some problems have unacceptable long computational time and hence, currently they are
practically unsolvable.

The parallel and distributed computations can give effect in cases where the computa-
tional environment setup time and the time on data transfer between the computing units
are considerably less than the time of the calculations (Amdahl’s law [12)).

Thus, the domain of problems addressed through a parallel version of the package
FARECO is clearly defined: it is different kinds of problems from physics, reducible to
a boundary-value or field-value problems where the computations in any point depends on
values in adjacent points and computably cumbersome. These include problems such as the
computations of distribution of neutron and thermal fields in nuclear reactors, modeling of

movement of physical body in mediums, etc.

References

[1] Mapanaxan B, “O6 OAHOM MeTOAe CHHTE3A NPOTPAMM MHCAOBLIX chyMKipr”,
annc_r.necxxe BOIPOCH KNOEpHETHKN B BhragcAuTession Texmkn, XV, 1986,

I2I Marandjian H., General form recursive equations, CSL, pp. 501-511, 1994.

3] Manna, Z., Theory of Computation. NY, McGrow-Hill 1978.

A. Ghazaryan 141
[4] Barron D., Recursive methods in programming, General Editor: Stanley Gill Associate
* Editor: J. J. Florentin, 1969.

[5] Ao A.V., Hoperoft J. E. and Ulman J.D., Dals Structures and Algoritms. Addisor-
Wesley, Reading, Massachusetts. 1983,

18] Borendregt, H. P., The lambda caleulus. Its symtor and semontics. North-Holland. 1084

[7] Ghazaryan A., On one method of flezible numeration, Proceedings of the conference.
CSIT, p. 15, 199T.

[8] Knaster B. Une théoréme sur les fonctions d’ensembles. Annales Soc. Polonaise Math.,
fiZ2, pp. 133 - 134, 1927.

(9] Rice H. G., Classes of recursively enumerable sets and their decision problems. Trans.
Amer. Math. Soc, pp. 358 — 366, 1974.

[10] Kleene, S. C., Introduction to Metamathematics. New York - Toronto, D. Van Nostrand
Co., Inc., 1952,

[11] Xaratan, W.T., TTakeT DpHKABAHEIX TPOTPAMM - ABTOMATHIECKHH IpPOrPAMMHEI CHHTE3.
Tesncir pcxaapos Tpersed PecayCiHKaHCKON KOHGEDEHIHN ACOHDARTOB ADMAHCKON
CCP, Hacts 2, Epesan, cc. 16 -17, 1989.

[12] Amdahl G. M., Validity of the single-processor approach to achieving large scale com-

. pubing capabilities. In AFIPS Conference Procecdings vol. 30 (Atlantic City. N.J.. Apr
18-20). AFIPS Press, Reston, Va., pp. 483-485, 1967.

Faympupy pniGhghwGeph hwydiwi owunpiwugiwG
Uh nwlwyh Jbpwpbpjuwg

U “wqupywi

Udthnthnd

Wu wpuwwnwlph Guunnmul t Gop owwmptwjwgiwl @uwlnudl m mbuwlwGnphs
wppupwgywd (hlbp, opp vhlpbigmd t pwqiwsunh nbympup] pmOygpwibp L
Pmlyghwbbph hwiwywnpgbip hwynn dpwgnptip: Oupnpdwwph Gaphujuigynn wwppbpwlp
dzwlyynud £ pbynipuhy pouGhghwbtph pruqiwwih hwdwlwpgbph pw)6 nuoh’ oquwgnpobing
tipynt wignpjipd. unbljwihG rbinupuhugh owwhiwiwgnud b i) thnfuwphGiwG wignphpdh
dhwnpywo oupnpiwjugnid: Wn wyuwmwlph wpnymGpGbpp Yuphih & oquuwgnpaty w)l
opugpuzwpbiph Szwiiwb dkg, npnlp hwynud b6 nhiyntpuhy $mbhghwibph hwiwlwpgtp,
unpbjuynpmd G0 pwpn gnfulwuwlgmpmGitpn] pighun puqiwswh hwiwlwpgnp,
monild bl hqpughl b puzuwghG fulinhpGep b wyG: .

