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Abstract
An [nterval total f—coloring of a graph G is & total whn‘ir.;‘uf l:::_iilh colors
1.2....,t such that at Innonewﬂexwedpufcbmlwed Wit = 18k
L e cges incident with each vertex v together with v are colored by (dg(s) + 1)
consecutive coiors. where dg(v) is the degree of the vertex t. in G. It is proved that
complete graphs, complete bipartite graphs and n—dimensional cubes have in@-ﬂ
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1 Introduction

A total coloring of-a graph G is a coloring
rertices, edges, and no incident vertices an
:cm coloring was introduced by V. Vizing |16} and independently by M. Behzad |4). The
total chromatic number x” (G) is the smallest number of colors needed for_lntal coloring of
G. One of the most important long-standing open problems in this arca is the conjecture
of Vizing-Behzad stating that x* (G) € A(G) + 2 for every graph G [4,16], where A(G) is
the maximum degree of a vertex of G. This conjecture became known as Total Coloring
Conjecture [9]. The Total Coloring Conjecture is proved for some classes of graphs, e.g., lor
complete graphs, for bipartite graphs, for complete multipartite g1 aphs [18], for planar graphs
C with A(G) # 6 [6,9,14], for graphs with sufficiently small maximum degree. M. Rosenfeld
(13] and N. Vijayaditya [15] independently proved that the total chromatic number of graphs
G with A(G) = 3 is at most 5. A. Kostochka in [10,11} proved that the total chromatic
number of graphs with A(G) = 4 (respectively A(G) = 5) is at most 6 (respectively 7).
Exact values for the total chromatic number are determined, e.g., for paths, eyeles, complete
and complete bipartite graphs [5], complete multipartite graphs of odd order [8], planay
graphs G with A(G) 2 11 [7] and onterplanar graphs [19].

The key concept discussed in this article is the following. Given a graph G, we say that
@ is interval total colorable if there is £ > 1 for which G has a total coloring with colors
1,2,...,t such that at least one verlex or cdge of G is colored by i, ¢ = 1,2,....L, and the
edges incident with each vertex v together with v are colored by (dg(v) + 1) consecutive
colors, where dg(v) is the degree of the vertex v in G,

The concept of interval total colorings is a new one in graph coloring, synthesizing interval
colorings [1-3] and total colorings. The introduced concept is valuable as it extends to total
colorings of graphs one of the most important notions of classical mathematics - the one of
continuity,

i
of its vertices and edges such that no adjncent
d edges obtain the same color. The concept of :
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L Definitions

) .
‘All graphs considered in this paper are finite, undirected and have no loops or muitiple edges.
st V(G) and E(G) denote the sets of vertices and edges of G. respectively. The degme of

venten v T lff!"\ e denoted '!-:; '_!:'.{1'}' the mavimum Hn.vrru-_z of o vertew of (7 - hu '\H‘

dhe chromatic nnmher of G— by x (G) and the chromatic index of G- by 3’'(G). For an
wdge coloring o of the graph G and for any v € V(G) we denote by S (v, a) the set of colors
Il colored edges incident with v. If § is a total coloring of a graph G then 8(v) and J(¢)
denote the color of & vertex v € V(G) and the color of an edge e € E(G) in the coloring 3.
ior & tolal coloring 3 of a graph G and for any v € V(G) define the set S |v. 3] as follows:

S, ] = {B(v)} U{Ble) | e is incident with v}

Let Z, denote the set of nonnegative integers, and |a| means the greatest integer < a.
For two integers a < b the set {a,a+1,...,b} is denoted by [a,b] and called an interval.
“or interval [a,b] and a p € Z., the notation [a, b| & p means: [a + p, b+ pl.

An interval total ¢—coloring of a graph G is a total coloring of G with colors 1.2,....¢
such thet at least one vertex or edge of G is colored by i, i = 1,2,...,t, and the edges
mcident with each vertex v together with v are colored by (dg(v) + 1) consecutive colors.

For t = 1 Jet Ty denote the set of graphs which have an interval total t—coloring, and
ussume: T = 19| 7,. For a graph C € T the least and the greatest values of t, for which

7 ¢ T, orc denoted by w, (G) and W, (G), respectively.

In this paper it is proved that complete graphs, complete bipartite graphs snd
4—dimensional cubes have interval fotal colorings and bounds are found for the possible
tumber of colors in such colorings.

The terms and concepts that we do not define can be found in [1,17,18].

3. Main results

Theorem 1. Foranyn € N

(1)K, €T,
n, ifnisodd,

(2) wr (Kn) = in, if nis even,

(3) W, (K,) =2n— 1.

Proof. Let V (K,) = {vi,v3,...,vn}, E(K;) = {(v,v;)| 1 <ié<j<n}. First of all
ot us show that forany ne N K, € Ty

Define a total coloring o of the graph K, in the following way:

1. fori=12...,n a(y)=2i-1;

2. fori=12...,nandj=12,...,n wherei#j, a((v,y)=i+j-L

It is easy to see that o is an intervnl total (2n — 1) — coloring of the graph K,. This
roves that for any n € N K, € T and W, (K,,) 2 2n — 1. On the other hand, it is not
ifficult to check that for any n € N W (K,) < 2n— 1. Hence (1) and (3) hold. Let us
rove (2).

Case 1: n is odd. Since K, is a regular graph with x” (K,) = n then w. (K,) = " (K,) =
1

Case 2: n is even. Now we show that w, (K,) < 2n.

Define a total coloring f of the graph K, in the following way:

Bm)=1 Bm)=n+1; ﬂ(u,,_,):%; ﬁf"‘ﬂ}‘—'g“:
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for imd gt Se)=i—k 8(vyses) =i+n =1L
Jlw,v)) =t+j-1

for I-=1."_'l§'_3=2.....;.’4j-'I+jsi"'lm
Eria S P || P <2 Feaset ((w)) =i+i+3-2
ot ey e Or pe E I GRS BREE s
oriml B i= g+l 2] F(we)) =J-i+ L -
i =2 14 [ 5= § L] + |50 0= Rl Altw)) = A
e T Ul o B i
i+j-%

for i = 3+1‘m‘g+ 1%] =-1,J= §+2...
S((wu))=i+i-n+h '

i m 341, o=l = B (2L o Bt 2 fnaet o Alun)) =ity

!tisnotdiﬁaﬂtwdwckthu:

s[-.-x,a}=5[v;._d}u{3ll':l}'I'é’-"IU{l}’u-"];

Sion 5] = S(ea AU {B(m)} = Zn]U{n+1} =2 +11;

3[,'“_4,3} = s(:v;+..¢..3)u{ﬂ (Ugu-!)} =[hi+n=2U{i+n-1} =[ii+tn=1]

s v..f-ﬂﬂSlt'.,;‘i)l-‘{‘-i(v-)}=E'-l+ﬂ-2lu{"'1l"i'—l-'ﬂl-2!-i=3.....§;

Sloen ] = S(ter AU B )} = [+ 1dn= 1] U {3} = [3dn-1]:

Stm 8] = S (1, 8) U {8 (va)} = [3+1,3n- 1] ufin}=[3+ L.n].

mmmusuwtmmlmal;n—coloﬂmunhemphk.md. therefore,
w, (K,) < §n. Let us prove that w- (Ky) = §n. Suppose, to the contrary, that v is an
interval total w, (K,) —coloring of the graph Ka, where n < w-(K,) < in— 1. Since
w. (Ka) 2 X" (K.) then w, (Kn) > n+1and, therefore, n+1 < w. (K.) € dn—1. Consider -
the vertices vy, U, ..+ Un: It isclear that fori =1,2,....n 1 < min S, 7] < w, (Ky)=n+1
Hence {u-,(!(..)—-n+l,....n} C Sl i=12...,n Letus show that uonrnf:h;
mi‘!’t‘ul‘:.---.ﬁiﬁmm b”j.1= W,(K.}'H+l,..-.ﬂ. Supposethn.l ‘)(‘I.'..) =*-.'NE
{w, (Ka) ~n+1,...,n}. It s cloar that for i = 1.2,...,n, i # i, 2{(t:) # Jo- This implies
that any vertex v, except vy, is incident with an edge of color j;, which is a contradiction
The contradiction shows that for i = 1,2,...,n  ¥(:) € {w, (Ki) —n+1,...,n}. Hemee
-y(y.)e{L....w,(K..}—n}u{n+l..A..nr..(K.)},i=1.2..‘..11. On the other hand since
Y (K,) = n then l_{l.....w,.(!{,,)—-n}|+ [{{n+1,...,w (Ku)} = n. From that we obtain
w, (K,) > §n, which is a contradiction. The proof is complete.

Theorem 2. (1) Foranyn € N if2n— 1<t <dn -3 then Ky, € 0. ]

(2}Letn.=p2‘,whmphodd.mdqez+. Thenifdn—p <t <4n-—1then Ky, € T,

Proof. First of al let us prove (1). For that we transform an interval total (1n — 3) ~
coloring a of the graph K3,-;, constructing in theorem 1, to interval total t-coloring 3 af 4

the same graph.
For every v € V(Kap—,) set:

X a(v), ifl<a(v) =t
Av) {om-znn. in+|5(vn(..)54n_.1.

n-2i<ji+jiSin-1s

For every e € E(K3,-,) set:

ﬁ{e}={ ale). f1<ale)st,
a(e)=2n+1, ift+1<a(e) <dn-3.
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' It is not difficult to see that 4 is an interval total t—coloring of the graph K3,.,. Now
wae prove (2). We use induction on g. Let g = 0. Let us show that if 3p < 1 < 4p —
& then K3, € 7. Consider a graph Kz, with V(Ky) = {v,v,...,v3} and E(Ky) =
W(vi.vy) | viov; € V(Kg), i<j}.

Lot G be & eubyraph of the wyanh IO, induced by its verticesvy oy, ... .0, Clesvle G ie
ssomorphic o the graph X,. Since p is odcl then fmm statement (1) of the theorem follows
ihat there exists an interval total ¢'—coloring 7 of G, where p< ¢ < 2p— 1.

Now we define & total coloring @ of Kap.
Fori1 = 1,...,pset: @ly) = v(y), and for 3 = p+ |,.... 2p set: 2ly) =

7 (v5-5) + 2p.
Fori=1,2,...,2pand j=1,2,...,2p, where i # 7, set:
7w, v5)), fl< i<p 1<j<p
ollmu)) =] TI+2 f1<i<p p+1<i<2 i=j~p
L] -’{(U"u’"})+p'ﬂls'5»°’P+1£J'S2p.:'q!j-p.

HW(%—psvs-p)) +2p, fp+1<i<2p, p+1<j<2p

. It is not difficult to see that  is an interval total (¢ +2p)—coloring of Ka,. This implics
that for any t, 3p <t <4p—1 Kj, € T;. Now suppase that g > 1 and the theorem is true
oor all 0 < ¢ < q— 1. We prove that theorem is true for case g. For that we show that if
92t —p < t < p27*? — | then Kppers € Ty,

Let G’ be a subgraph of the graph Kpge+1, induced by its vertices vy, vy, ..., Upae. Clearly
.5 is isomorphic to the graph Kze and, therefore, there exists an interval total t”~coloring
A of G’, where p27*! — p < 1" < p27+! — 1 (by induction hypothesis).

Define a total coloring i of Kpgesr.
Fori=1,...,p2%set:  p(v;)=A(v), and for j =p2+1,...,p2%" set:  p(yv,) =
A (vj-pav) + P27+,
Fori=1,2,...,p2°" and j = 1,2,...,p2% where i # j, set
A(("”in"-"}”v fl1< ‘5}’2" 1<) <p2%
Y = A (vi) + p27, fl1<i<p, p27+1<7<p2t, i=j—p2"
MO0 =1 X((vhy gon)) + 92, 1 <5 < P2, P21 +1< 5 < g2, i j - p2t

A((viepas, Vp)) +p27!, i p20+1<i < p2*), p274+1< 5 < p2t

It is not difficult to see that p is an interval total (¢ + p27*')—coloring of Kype+:. This
mplies that for any t, p2*? —p <t < p27*2 — 1 Kpetr € T;. The proof is complete.
Lemma 1. Forany mn € N Kpn € Toninst-

Let us define a total coloring o of the graph K, in the following way:
LLIori=1,2,...,m o(w)=1i,andfor j=1,2,...,n aly)=m+1+7
2 fori=12....,mandj=12...,n a((uyv))=i+]
It is casy to see thaf. o is an mmve.l total (m + n + 1) —coloring of the graph Ky, ». The
Jroohscomplel.u

Theorem 3. Foranymnée N

(1) Kmn €T,

(2) we (Kmnn) <m+n+2— ged (m,n) (ged (m,n) i1s the greatest common divisor of m
and n),
(3) Wy (Knn) 2m+n+1,

Proof. Let V (Knn) = {u1, 1, - . ., U, U1, 03, .. :Un} F(Km n) = {(u'h”j” 1€i<m.1<;
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. Sk < +n+1 then Kua € T
@) Em+ns2 sﬂilM-ﬂ)-—‘S"km;. 1. Next we show that i ¢ = m

Proof. and (3) follow from t
n+2- p:d{(ﬂu.nl ~.‘-tk. where 0 € & € ged(m.n) = 1. then Kan €00
V[KM}-{IH.I; ..... lu,.t‘;.t‘:-_---.l’-}'s(xm)" {{w ) 1sismlis)s n]
s=gedi{mn). o |
bgraph of the gaph K ind X o g
n ::.f::c:ily.ﬂismorphktothc Kar md.enmtq:u_mly. ViH)=AlH) =
,_'Mm-“,dgmuouhegmﬁﬂinthehnwinsnmw a ({8 vy)) = 1+ j. where

=12....0
t’Jl"tl't.llel:ra;hHdeeﬁm!l:lec!s'lawlt':rins.S:E:[H)--—-'|'_2.3 ..... a+k+ 1) as follows.

wmmdww

if2<allw.v)) So+k+l,

af(um.v)),
2 < a{{uiv;)) < 20.

8 (e 9)) = { al(mry) -0 Ho+k+
1t s not diffcul to see that 3 is an interval edge coloring {2] of the graph I with colors

23...0+k+1. . »
Nwwommmintervdmw:—mhmlsolthegmphh“.
Forie N deﬁulhncdonﬁ{i)mthefvﬂowinsm
i o if o divides 1.
M'J={i—o[§]. otherwise.
ForjeN define a function fa(7) in the following way:

il =1, if o divides j.
wo-{ 222

Forie N and j€ N define a function f3(1,7) in the following way:

+ |2, if o does not divide ¢ or j,

+[4] =1, if (o divides i and does not divide j) or
(e divides j and does not divide ),

|2] +[2] -2 if o divides i and j.

i
s
24
v

Lig) =

Define a total coloring 5 of the graph K n.
Fori= 1,2....,m set: 'r(n,}=min3(um,-,.ﬂ)+af,(i)—l.
For j=1,2,...,n set: ¥ (vy) =m+m1n3(vnm.ﬁ) + o fa(4). .

Fori=13%..., mandj=1,2,...,nset: 5 = )
It is not difficult to check that for i = 1,2,.. ..ﬁ(m ) = B (g )+ )

Sl =n )= [(H‘? (urB) @ (k- n) eahw] ULy ()} =
= [min$ (u, . 8) + o /fa(i)n+ min 8 (u, . B) + 0 fai) ~ 1] U
U {min S (u,,,8) +0fa(i) = 1} =
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= [min$ (u,,,,8) + afuli) - 1,n + min s ( U0 8) + 0 fali) — 1
and for j =1,2,....,n

rsm . -

8 u5,7) = 8 (0y,7) U (o)} = “9} 5 (v,:8) @0 (k 1)) e,a;,ujJ U {7 (v} =

= {mins {_b‘,!,”. .3) +ofaly),m+min s (n :!;.-'6) +afali) - 1] u
Ufm+min$ (v, . 8) + o)} =

= [mlns ('J;;m: ﬂ) + 0 fa(j),m + min § (vnm'ﬂ) + 6130}} >

Therefore, + is an interval total t—coloring of the graph K., ... The proof is complete.

Corollary. Forunyn€ N w,(K,,)=n+2.

Lemma 2. Foranyn>3ifn+1 <t <2nthen Q, T,

Proof. First of all we show that @, has an interval total (n+1)— coloring. Since
xX'(Qn) =n+1,n 2 3 then Q, € 7 and we(n) =n+1,n >3 Now suppose
that n + 2 < t < 2n. Since Q, is a bipartite graph then V(@s) = Vi(Qu)u Va(@n).
Vi (Qn) N V;(Qn) = @, where V; (Qn),V3(Q,) are the parts of the greph Q.. From the
result. of [12] it follows that if n < I < 2n — 2 then @, has an interval edge [—coloring.

Now we construct an interval total t—coloring of the graph Q,,. Let a be an interval edge
(t — 2) —coloring of the graph Q... For a graph @, define an edge coloring 3 in the following
way: for every e € I(Qn) f(e) = a(e) + 1. It is not difficult to see that 3 is an interval
edge coloring [2] of the graph Q, with colors 2,3,...,¢ — 1.

Let us define a total coloring « of the graph Q. in the following way:

1. for every v € V (Q,) set

7(v) = { minS(y,f) -1, fvel (@n),
maxS (v,8) +1, ifve V3(Qu)

2. forevery e € E(Qn) set () = A (e).

It is easy to see that v is an interval total t—coloring of the graph Q,, n > 3. The proof
is complete.

Theorem 4. For anyn e N

(1) QueT,

{z)w,{qn1={ ik B
(3) Wy (Qn) > (otllfnt2)

() if w, (Qn) < t < 230D hop o e 7;,

Proof. Clearly, (1) and (2) are true for the case n < 2 and for n > 3 statements follow
from lemma 2. Note that (3) follows from (4). Let us prove (4). Clearly. (4) is true in casc
n<2 Assumethatnza.[gtuanhuwthatiln+lStsl’ﬂg"—‘“ﬂ then @, € 7.

We use induction on n. Now suppose that n > 4 and the statement is true for all
3 <n' <n—1. We prove that (4) is true for case n. Without loss of generality we may
assume that 2n +1 < < "‘—“gl'ﬁ'—’] (by lemma 2). Since @, = K; x Q,_;, therefore there
are two subgraphs @S, and Q' of Q,, which satisfy conditions: V/(Q", INVIQR,) = 0.
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L) I o
2 st i i=12 Iti c.lm:lhntlotizl"."(?:._u:f-_('leﬂh; s
; M?Jvf" ?n:::ﬁ:wt::e:e::u:sn biection / : ¥(Qh) — VIQ: ;: such that
?:, y) € E(QY.) iﬂ.:.;flxl.fly)l ¢ E(Q®,). Let a bean interval total (¢ — n — 1) ~coloing
graph @4, (by induction hypothesis). :

4 ‘:; s m:.a‘_{,deﬁnc a total coloring J'in the following way:

(1) for every w € V(QRy)  S(w) = a(f(u) +n+ 1 % 1

(2 for vy (,9) € Q) Alfwv)) = (/e SN ot

Now we define a total coloring ¥ of the graph Qn.

For every z € V (Q.) set:

a(z), iz V(@)
7E { 8(z), iz e VIQE).
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For every (z,v) € E(Q,) set:
ifz,p€ "'{09_]'];

{{z.9)) :
(=) = am!r..?[:.a; I m ifzeV{ ‘,1_’1‘,.;1 C "'{QE’_‘,l}, y= fi';']}i
- B((=. 1), if r.ye V(QY,)

It is not difficult to sce that ¥y is an interval total t—coloring of Q,. This implies that if
n+1<tS 5"—*'-}2(Lt1} then Qu € Ts. The proof is complete.
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Uiithnthnud

G gpuubh (hwhwwnwp Gepynwip 1,2,...¢ qnyGbpny Julyulbip Showlw pw;hi
Ipwhuwinwp t-Giplymd, tpb wikG dh i qmylny, ¢ = 1,2,...t Ghplywd b wnljwql by
ququp Yuid ynn L ympwpwlynip ququiphl Yhg Ynnbipp L quiquipp GhpYgwd b (dg(c)+ 1)
hwgnpnwlwl gnijitipny, npintin de(v)- ny Gululyws t ququph wumpBwip G gpudnus:
Uuugnigywd t, np (nhy gnublbpp, (phy bplynniwh gpupGpp b swihwsh funpwbwpnp
mbhl dhgwlwpushl hwlunwp GhphouiGbp L quwd b6 giwhwinwlhwiibp win
fitpynudiiph dbg twuliwygnn qnuyGhph hGwpuinp pyh huswp:



