Necessary and Sufficient Condition for Existence of Locally-balanced 2-partition of a Tree under the Extended Definition of a Neighbourhood of a Vertex

Suren V. Balikyan† and Rafayel R. Kamalian‡

Yerevan State University
 e-mail: suren.balikyan@gmail.com
 Russian-Armenian State University
 e-mail: rrkamalian@yahoo.com

Abstract

A necessary and sufficient condition is obtained for the problem of partitioning of the set of vertices of a tree G into two disjoint sets V_1 and V_2 such that it satisfies the condition $||\lambda(v) \cap V_1| - |\lambda(v) \cap V_2|| \le 1$ for any vertex v of G, where $\lambda(v)$ is the set of all vertices of G the distance of which from v does not exceed 1.

We consider finite, undirected graphs without loops or multiple edges. Let V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively. If $v \in V(G)$ then $ex_G(v)$ denotes the eccentricity of a vertex v in a graph G. For a graph G let $\Delta(G)$ be the greatest degree of a vertex of G. Let $\rho_G(x,y)$ denote the distance between the vertices $x \in V(G)$ and $y \in V(G)$ in a graph G. For $v \in V(G)$ let us denote $\lambda(v) \equiv \{v\} \cup \{\omega \in V(G)/(\omega,v) \in E(G)\}$. A function $f: V(G) \to \{0,1\}$ is called 2-partition of a graph G. 2-partition f of a graph G is called locally-balanced iff for $\forall v \in V(G)$

$$||\{\omega\in\lambda(\nu)/f(\omega)=1\}|-|\{\omega\in\lambda(\nu)/f(\omega)=0\}||\leq 1.$$

Non-defined concepts can be found in [1, 2, 3, 4, 5].

Let $x \in V(G)$ be an arbitrary vertex of a tree G.

We define the subset $N_i(x)$ of the set V(G), where $0 \le i \le ex_G(x)$, as follows:

$$N_i(x) \equiv \{z \in V(G)/\rho_G(x,z) = i\}.$$

Obviously, for any $u \in N_i(x)$, where $1 \le i \le ex_G(x)$, there exists a single vertex $u^{(-1)} \in N_{i-1}(x)$ satisfying the condition $(u, u^{(-1)}) \in E(G)$.

Let us assume we have some partition of the set $V(G)\setminus\{x\}$ into sets A(x). B(x). C(x), which satisfies following conditions:

$$V(G)\backslash\{x\}=A(x)\cup B(x)\cup C(x),\\ A(x)\cap B(x)=\emptyset,\quad B(x)\cap C(x)=\emptyset,\quad A(x)\cap C(x)=\emptyset.$$

For $\forall u \in V(G) \backslash N_{\exp(x)}(x)$ define:

$$\begin{array}{l} a(u) \equiv |\{v \in N_{\rho_G(x,u)+1}(x)/(u,v) \in E(G), v \in A(x)\}|, \\ b(u) \equiv |\{v \in N_{\rho_G(x,u)+1}(x)/(u,v) \in E(G), v \in B(x)\}|, \\ c(u) \equiv |\{v \in N_{\rho_G(x,u)+1}(x)/(u,v) \in E(G), v \in C(x)\}|. \end{array}$$

Note 1. From the definitions of functions a, b and c it follows that if for $\forall i$, $1 \le i \le ex_G(x)$ for all $u \in N_i(x)$ it is already determined whether $u \in A(x)$, $u \in B(x)$ or $u \in C(x)$, then for an arbitrary $u \in N_{i-1}(x)$ the values a(u), b(u) and c(u) are unambiguously calculated.

Note 2. $a(x) + b(x) + c(x) = d_G(x)$; for $\forall u \in V(G) \setminus (N_{ex_G(x)}(x) \cup \{x\})$ the equality $a(u) + b(u) + c(u) + 1 = d_G(u)$ holds.

Let us inductively define sets A(x), B(x) and C(x) as follows:

$$N_{ex_G(x)}(x) \subseteq B(x), \ N_{ex_G(x)}(x) \cap A(x) = \emptyset, \ N_{ex_G(x)}(x) \cap C(x) = \emptyset.$$

Assume that for $i, 2 \le i \le ex_G(x)$, the partitioning of $N_i(x)$ is already defined:

$$N_i(x) = (N_i(x) \cap A(x)) \cup (N_i(x) \cap B(x)) \cup (N_i(x) \cap C(x)).$$

It follows from the note 1 that the values of functions a, b and c can be calculated for each $u \in N_{i-1}(x)$.

Define the partitioning of $N_{i-1}(x)$ as follows: for $\forall u \in N_{i-1}(x)$

$$u \in \left\{ \begin{array}{ll} A(x), & \text{if } 1 \leq b(u) - (d_G(u) - b(u)) \leq 2, \\ B(x), & \text{if } -1 \leq a(u) - (d_G(u) - a(u)) \leq 0, \\ C(x), & \text{if inequalities } 1 \leq b(u) - (d_G(u) - b(u)) \leq 2, \\ -1 \leq a(u) - (d_G(u) - a(u)) \leq 0 \text{ are false.} \end{array} \right.$$

Let us show that under the given definition the following conditions are true.

$$(N_{i-1}(x) \cap A(x)) \cap (N_{i-1}(x) \cap C(x)) = \emptyset,$$

 $(N_{i-1}(x) \cap B(x)) \cap (N_{i-1}(x) \cap C(x)) = \emptyset,$
 $(N_{i-1}(x) \cap A(x)) \cap (N_{i-1}(x) \cap B(x)) = \emptyset.$

Obviously, it will be enough to show the correctness of the last condition only. Assume the opposite: $\exists u_0 \in (N_{i-1}(x) \cap A(x) \cap B(x))$. This means that following inequalities take place $1 \leq b(u_0) - (d_G(u_0) - b(u_0) \leq 2, -1 \leq a(u_0) - (d_G(u_0) - a(u_0) \leq 0.$

This implies $1 + d_G(u_0) \le 2 \cdot b(u_0) \le 2 + d_G(u_0)$, $1 + d_G(u_0) \le 2 + 2 \cdot a(u_0) \le 2 + d_G(u_0)$.

Since $2 \cdot b(u_0)$ and $2 + 2 \cdot a(u_0)$ are even integers, and $1 + d_G(u_0)$ and $2 + d_G(u_0)$ are consecutive integers then the following two cases only are possible.

Case 1. $2 \cdot b(u_0) = 2 + 2 \cdot a(u_0) = 1 + d_G(u_0)$

Obviously, $a(u_0) = \frac{d_G(u_0)-1}{2}$, $b(u_0) = \frac{d_G(u_0)+1}{2}$. It follows from the note 2 that $d_G(u_0) \ge 1 + a(u_0) + b(u_0) = 1 + \frac{d_G(u_0)-1}{2} + \frac{d_G(u_0)+1}{2} = 1 + d_G(u_0)$, which is impossible.

Case 2. $2 \cdot b(u_0) = 2 + 2 \cdot a(u_0) = 2 + d_G(u_0)$

Obviously, $a(u_0) = \frac{d_G(u_0)}{2}$, $b(u_0) = 1 + \frac{d_G(u_0)}{2}$. It follows from the note 2 that $d_G(u_0) \ge 1 + a(u_0) + b(u_0) = 1 + \frac{d_G(u_0)}{2} + 1 + \frac{d_G(u_0)}{2} = 2 + d_G(u_0)$, which is impossible.

The obtained contradiction shows that $(N_{i-1}(x) \cap A(x)) \cap (N_{i-1}(x) \cap B(x)) = \emptyset$

It is easy to see that the sets A(x), B(x) and C(x) are unambiguously defined and moreover, $V(G)\backslash\{x\}=A(x)\cup B(x)\cup C(x),\ A(x)\cap B(x)=\emptyset,\ B(x)\cap C(x)=\emptyset,$

Note that we have also defined the following functions $a:(V(G)\backslash N_{ex_G(x)}(x))\to Z_+$ $A(x) \cap C(x) = \emptyset.$

 $b: (V(G)\backslash N_{eag(s)}(x)) \to Z_+, \quad c: (V(G)\backslash N_{eag(s)}(x)) \to Z_+.$

Further we shall assume, that consideration of any tree G automatically implies the choice of a vertex $x \in V(G)$, the realization of the partitioning of the set $V(G)\setminus\{x\}$ into sets A(x), B(x), C(x) mentioned above and the definition of functions a, b, c on the set $V(G) \backslash N_{exo}(z)(x)$.

Lemma 1. If G is a tree and f – its locally-balanced 2-partition, then for $\forall u \in V(G) \setminus \{x\}$ following properties hold $u \in A(x) \Rightarrow f(u^{(-1)}) = f(u), u \in B(x) \Rightarrow f(u^{(-1)}) = 1 - f(u).$

Proof is done by reverse induction on $\rho_G(x, u)$.

First of all let us prove the lemma for vertices of the set $N_{ex_G(\pi)}(x)$.

Obviously, $A(x) \cap N_{\operatorname{cz}_G(x)}(x) = \emptyset$, so there is nothing to prove

Let $u \in B(x) \cap N_{ex_G(x)}(x)$. Obviously, $d_G(u) = 1$. Since f is a locally-balanced 2-partition of G, then $f(u) = 1 - f(u^{(-1)})$, which is the statement of the lemma.

Assume that the lemma holds for all vertices of the set $N_i(x)$, where $2 \le i \le ex_G(x)$. Let us prove the lemma for vertices of the set $N_{i-1}(x)$.

Let $u \in N_{i-1}(x)$ be an arbitrary vertex.

Case 1. $u \in A(x)$.

From the definition of A it follows that $1 \le b(u) - (d_G(u) - b(u)) \le 2$, so $0 \le b(u) - b(u) \le 2$ $(d_G(u) - b(u) + 1)$. From this inequality, the inductive assumption and the fact that f is a locally-balanced 2-partition of G we conclude that for $\forall \omega \in \lambda(u) \backslash B(x)$ $f(\omega) = f(u)$ and, particularly, $f(u^{(-1)}) = f(u)$.

Case 2. $u \in B(x)$.

From the definition of B it follows that $-1 \le a(u) - (d_G(u) - a(u)) \le 0$, so $0 \le 0$ $a(u) + 1 - (d_G(u) - a(u))$. From this inequality, the inductive assumption and the fact that f is a locally-balanced 2-partition of G we conclude that for $\forall \omega \in \lambda(u) \setminus (A(x) \cup \{u\})$ $f(\omega) = 1 - f(u)$ and, particularly, $f(u^{(-1)}) = 1 - f(u)$. Lemma is proved.

Theorem 1. For a given tree G there exists a locally-balanced 2-partition iff for ∀u ∈ $V(G)\backslash N_{ex_G(x)}(x)$ following inequalities simultaneously hold:

$$b(u) - (d_G(u) - b(u)) \le 2$$
, $a(u) - (d_G(u) - a(u)) \le 0$.

Proof. Necessity. Suppose that f is a locally-balanced 2-partition of the tree G.

Let us prove that for any vertex $u \in V(G) \setminus N_{exc(x)}(x)$ following inequalities simultaneously hold: $b(u) - (d_G(u) - b(u)) \le 2$, $a(u) - (d_G(u) - a(u)) \le 0$.

Assume the opposite. This means that there exists a vertex $u_0 \in V(G) \backslash N_{exo}(x)$ for which at least one of the mentioned inequalities is false.

Let us assume that the inequality $b(u_0) - (d_G(u_0) - b(u_0)) \le 2$ is false. Then the inequality $b(u_0) - (d_G(u_0) - b(u_0) + 1) > 1$ is true. But this inequality, taking into account the statement of the lemma 1, contradicts the fact that f is a locally-balanced 2-partition of the tree G.

Let us assume that the inequality $a(u_0)-(d_G(u_0)-a(u_0)) \le 0$ is false. Then the inequality $a(u_0)+1-(d_G(u_0)-a(u_0))>1$ is true. But this inequality, taking into account the statement of the lemma 1, contradicts the fact that f is a locally-balanced 2-partition of the tree G.

Sufficiency. Suppose that for $\forall u \in V(G) \backslash N_{\exp(x)}(x)$ following inequalities simultaneously hold: $b(u) - (d_G(u) - b(u)) \le 2$, $a(u) - (d_G(u) - a(u)) \le 0$.

Let us inductively define a function $f: V(G) \to \{0,1\}$.

Let us set $f(x) \equiv 1$.

Let us assume that for all vertices of the set $N_i(x)$, where $0 \le i \le \exp(x) - 1$, the function f is already defined. Let us define the function f for vertices of the set $N_{i+1}(x)$.

For each vertex $u \in N_i(x)$ let us define the function f for vertices of the set $N_{i+1}(x) \cap \lambda(u)$. Obviously, without loss of generality it can be supposed that all vertices of the set $N_{i+1}(x) \cap \lambda(u) \cap C(x)$, if it is not empty, are numbered: $h_1(u), h_2(u), \dots, h_{c(u)}(u)$

First of all let us define the function f on vertices of the set $N_{i+1}(x) \cap \lambda(u) \cap A(x)$ by

the following way: for $\forall z \in N_{i+1}(x) \cap \lambda(u) \cap A(x)$ set $f(z) \equiv f(u)$.

Now let us define the function f on vertices of the set $N_{i+1}(x) \cap \lambda(u) \cap B(x)$ by the following way: for $\forall z \in N_{i+1}(x) \cap \lambda(u) \cap B(x)$ set $f(z) \equiv 1 - f(u)$.

Note 3. On all vertices of the set $\lambda(u)\setminus (C(x)\cap N_{i+1}(x))$ the function f is already defined

Let us denote $\epsilon(u) = |\{\omega \in \lambda(u) \setminus (C(x) \cap N_{i+1}(x))/f(\omega) = f(u)\}|$ and $\sigma(u) = |\{\omega \in A(u) \setminus C(x) \cap N_{i+1}(x)\}|$ $\lambda(u)\setminus (C(x)\cap N_{i+1}(x))/f(\omega)=1-f(u)\}|.$

It follows from the note 3 that values of $\epsilon(u)$ and $\sigma(u)$ are already defined.

Now let us define the function f on vertices of the set $N_{i+1}(x) \cap \lambda(u) \cap C(x)$ by the following way: for $\forall z \in N_{i+1}(x) \cap \lambda(u) \cap C(x)$ set:

$$f(z) \equiv \begin{cases} f(u), & \text{if } z = h_j(u), \text{ where } 1 \leq j \leq \sigma(u) - \epsilon(u), \\ 1 - f(u), & \text{if } z = h_j(u), \text{ where } 1 \leq j \leq \epsilon(u) - \sigma(u), \\ f(u), & \text{if } z = h_j(u), \text{ where } |\epsilon(u) - \sigma(u)| < j \leq c(u) \text{ and } \\ j - |\epsilon(u) - \sigma(u)| \text{ is an odd number,} \\ 1 - f(u), & \text{if } z = h_j(u), \text{ where } |\epsilon(u) - \sigma(u)| < j \leq c(u) \text{ and } \\ j - |\epsilon(u) - \sigma(u)| \text{ is an even number.} \end{cases}$$

So we have defined the function f on all vertices of the set $N_{i+1}(x)$.

Therefore, the function f is defined on whole V(G).

Let us check that the function f defined above is a locally-balanced 2-partition of the tree G, indeed.

Let $u \in V(G)$ be an arbitrary vertex.

Case 1. u = x.

Since $b(x) - (d_G(x) - b(x)) \le 2$ and $a(x) - (d_G(x) - a(x)) \le 0$ then, taking into account the note 2, we obtain: $b(x) - (a(x) + 1) \le 1 + c(x)$ and $(a(x) + 1) - b(x) \le 1 + c(x)$.

Case 1a). $c(x) \le b(x) - (a(x) + 1)$.

Obviously $|\{\omega \in \lambda(x)/f(\omega) = f(x)\}| = a(x)+1+c(x), |\{\omega \in \lambda(x)/f(\omega) = 1-f(x)\}| = b(x).$

Let us show that $|b(x) - (a(x) + 1 + c(x))| \le 1$.

It is clear that in this case that $|b(x)-(a(x)+1+c(x))|=b(x)-(a(x)+1+c(x))\leq 1$.

Case 1b). $c(x) \le (a(x) + 1) - b(x)$.

Obviously $|\{\omega \in \lambda(x)/f(\omega) = f(x)\}| = a(x) + 1$, $|\{\omega \in \lambda(x)/f(\omega) = 1 - f(x)\}| =$ b(x) + c(x).

Let us show that $|(a(x) + 1) - (b(x) + c(x))| \le 1$.

It is clear that in this case that $|(a(x)+1)-(b(x)+c(x))|=(a(x)+1)-(b(x)+c(x))\leq 1$.

Case 1c). c(x) > |b(x) - (a(x) + 1)|.

It is clear that in this case the equality

implies the inequality $||\{\omega \in \lambda(x)/f(\omega) = f(x)\}| - |\{\omega \in \lambda(x)/f(\omega) = 1 - f(x)\}|| \le 1$.

Case 2. $u \neq x$.

Case 2a), $u \in A(x)$.

In this case $1 \le b(u) - (d_G(u) - b(u)) \le 2$.

From the note 2 it follows that following inequalities are true $0 \le b(u) - a(u) - c(u) - 2 \le 1$,

 $c(u) \le b(u) - (a(u) + 2).$

Obviously $|\{\omega \in \lambda(u)/f(\omega) = f(u)\}| = a(u) + 2 + c(u), |\{\omega \in \lambda(u)/f(\omega) = 1 - f(u)\}| = a(u) + c(u)$ b(u).

Let us show that $|b(u) - (a(u) + c(u) + 2)| \le 1$.

It is clear that in this case that $|b(u) - (a(u) + c(u) + 2)| = b(u) - (a(u) + c(u) + 2) \le 1$. Case 2b). $u \in B(x)$.

In this case $-1 \le a(u) - (d_G(u) - a(u)) \le 0$.

From the note 2 it follows that following inequalities are true $0 \le a(u) - b(u) - c(u) \le 1$.

c(u) < a(u) - b(u).Obviously $|\{\omega \in \lambda(u)/f(\omega) = f(u)\}| = a(u) + 1$, $|\{\omega \in \lambda(u)/f(\omega) = 1 - f(u)\}| = a(u) + 1$

b(u) + 1 + c(u).

Let us show that $|a(u) + 1 - (b(u) + c(u) + 1)| \le 1$.

It is clear that in this case that |a(u) + 1 - (b(u) + c(u) + 1)| = |a(u) - b(u) - c(u)| = $a(u) - b(u) - c(u) \le 1.$

Case 2c). $u \in C(x)$.

In this case following inequalities are false $1 \le b(u) - (d_G(u) - b(u)) \le 2$, $-1 \le a(u) - b(u) - b(u) \le 2$ $(d_G(u) - a(u)) \le 0.$

Consequently, using the condition of the theorem, we obtain $b(u) - (d_G(u) - b(u)) < 1$,

 $a(u) - (d_G(u) - a(u)) < -1.$

Now, taking into account the note 2, we conclude that b(u) - a(u) - 2 < c(u). a(u) - b(u) < c(u), which imply $|b(u) - (a(u) + 2)| \le c(u) + 1$ and $|a(u) - b(u)| \le c(u) + 1$. Case 2c)1. $f(u^{(-1)}) = f(u)$.

Case 2c)1a). $|b(u) - (a(u) + 2)| \ge c(u)$.

It is clear that in this case the inequality $|b(u) - (a(u) + 2)| \le c(u) + 1$ implies the inequality $||\{\omega \in \lambda(u)/f(\omega) = f(u)\}| - |\{\omega \in \lambda(u)/f(\omega) = 1 - f(u)\}|| \le 1$.

Case 2c)1b). |b(u) - (a(u) + 2)| < c(u).

It is clear that in this case the equality

$$\begin{array}{l} |\{\omega\in(\lambda(u)\backslash\{h_{|b(u)-(a(u)+2)|+1}(u),\ldots,h_{c(u)}(u)\})/f(\omega)=f(u)\}|=\\ |\{\omega\in(\lambda(u)\backslash\{h_{|b(u)-(a(u)+2)|+1}(u),\ldots,h_{c(u)}(u)\})/f(\omega)=1-f(u)\}|. \end{array}$$

implies the inequality $||\{\omega \in \lambda(u)/f(\omega) = f(u)\}| - |\{\omega \in \lambda(u)/f(\omega) = 1 - f(u)\}|| \le 1$. Case 2c)2. $f(u^{(-1)}) = 1 - f(u)$.

Case 2c)2a). $|a(u) - b(u)| \ge c(u)$.

It is clear that in this case the inequality $|a(u) - b(u)| \le c(u) + 1$ implies the inequality $||\{\omega \in \lambda(u)/f(\omega) = f(u)\}| - |\{\omega \in \lambda(u)/f(\omega) = 1 - f(u)\}|| \le 1.$

Case 2c)2b). |a(u) - b(u)| < c(u).

It is clear that in this case the equality

$$\begin{aligned} &|\{\omega \in (\lambda(u) \setminus \{h_{|a(u) \mapsto b(u)| + 1}(u), \dots, h_{c(u)}(u)\}) / f(\omega) = f(u)\}| = \\ &|\{\omega \in (\lambda(u) \setminus \{h_{|a(u) \mapsto b(u)| + 1}(u), \dots, h_{c(u)}(u)\}) / f(\omega) = 1 - f(u)\}|. \end{aligned}$$

implies the inequality $||\{\omega \in \lambda(u)/f(\omega) = f(u)\}| - |\{\omega \in \lambda(u)/f(\omega) = 1 - f(u)\}|| \le 1$. Theorem is proved.

References

- S.V. Balikyan, R.R. Kamalian, "On NP-completeness of the Problem of Existence of Locally-balanced 2-partition for Bipartite Graphs G with Δ(G) = 3", Reports of NAS RA, vol. 105, num. 1, pp. 21-27, 2005.
- [2] S.V. Balikyan, R.R. Kamalian, "On NP-completeness of the Problem of Existence of Locally-balanced 2-partition for Bipartite Graphs G with Δ(G) = 4 under the Extended Definition of the Neighbourhood of a Vertex", Reports of NAS RA, vol. 106, num. 3, pp. 218–226, 2006.
- [3] S.V. Balikyan, "On Locally-balanced 2-partitions of some Bipartite Graphs", Abstracts of papers of 15th International Conference "Mathematics. Computing. Education.", vol. 15, p. 7, Dubna, Russia, January 28 - February 02 2008.
- [4] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
- [5] C. Berge, Graphs and Hypergraphs, Elsevier Science Ltd, 1985.

Ծառում լոկալ-հավասարակշոված 2-տրոհման գոյության համար անհրաժեշտ և բավարար պայման գագաթի շրջակայքի ընդլայնված սահմանման դեպքում

Մ. Քալիկյան, Ռ. Քամալյան

Ամփոփում

Մտացված է անհրաժեշտ և բավարար պայման ծառի գագաթների բազմության V_1 և V_2 չհատվող ենթաբազմությունների այնպիսի տրոհման գոյությունը պարզելու համար, որ ծառի յուրաքանչյուր v գագաթի համար տեղի ունենա $||\lambda(v)\cap V_1|-|\lambda(v)\cap V_2||\leq 1$ անհավասարությունը, որտեղ (v)-ով նշանակված է այն գագաթների բազմությունը, որոնց հեռավորությունը v-ից չի գերազանցում 1-ին։