On Interval-Separable Subsets of Vertices of a Complete Graph

Hakob Z. Arakelyan and Rafayel R. Kamalian2 Department of Informatics and Applied Mathematics, YSU, Institute for Informatics and Automation Problems of NAS of RA, e-mail: arak hakob@yahoo.com, rrkamalian@yahoo.com

Abstract

A subset R of the set of vertices of a graph G is called interval-separable iff there exists a proper edge coloring of G in which colors of edges incident with any vertex x of G form an interval of integers iff $x \in R$. All interval-separable subsets of the set of vertices of the complete graph are found.

1. Preliminaries

We consider undirected graphs without loops and multiple edges [1]. Let V(G) and E(G) denote the sets of vertices and edges of a graph G, respectively. If $x \in V(G)$ then let $d_G(x)$ denote the degree of a vertex x in a graph G. For a graph G let $\Delta(G)$ be the greatest degree of a vertex of G, $\chi^*(G)$ be the chromatic index of G [2]. Let $\beta(G)$ denote the cardinality of the greatest matching of a graph G.

The set of positive integers is denoted by N. If D is a finite non-empty subset of N then let l(D)and L(D) denote the least and the greatest element of D, respectively. A non-empty finite subset D of N is referred as interval if $l(D) \le t \le L(D)$, $t \in N$ implies that $t \in D$. An interval D is called h – interval if |D| = h. An interval D is called (q, h) -interval and is denoted by Int(q, h) if I(D) = q, |D| = h. A function $\varphi: E(G) \to Int(1,t)$ is referred as a proper edge t – coloring of a graph G if

- 1) for each $i \in Int(1,t)$, there is $e \in E(G)$ such that $\varphi(e) = i$.
- 2) for any adjacent edges $e' \in E(G)$, $e'' \in E(G)$ $\varphi(e') \neq \varphi(e'')$.

If φ is a proper edge t – coloring of a graph G, where $\chi'(G) \le t \le |E(G)|$ and $x \in V(G)$ then let $S(x, \varphi) = \{i \in N \mid \exists e_0 \in E(G) \text{ such that } x \text{ is adjacent to } e_0 \text{ and } \varphi(e_0) = i\}$. A proper edge t - coloring φ of a graph G is called interval edge t - coloring of G [3], if for $\forall x \in V(G)$ $S(x, \varphi)$ is a $d_G(x)$ - interval. Let \mathfrak{A}_t denote the set of graphs for which there is an interval t - coloring and assume or = | or

For $G \in \mathfrak{R}$ let w(G) and W(G) be the least and the greatest possible value of t, respectively. for which $G \in \mathfrak{A}_{\epsilon}$.

Proposition 1. [4] If G is a regular graph, then $G \in \mathfrak{N}$ if and only if $\chi'(G) = \Delta(G)$.

Corollary 1. $K_n \in \mathfrak{N}$ if and only if p is even.

Theorem 1. [4] If G is a regular graph with $\gamma'(G) = \Delta(G)$, then for $\forall t(\Delta(G) \le t \le W(G))$ GE M.

Theorem 2. [5.6] For $\forall n \in N \ W(K_{2n}) \ge 3n-2$.

A proper edge t – coloring φ of a graph G is called interval on $R \subseteq V(G)$ edge t – coloring of a graph G [4], if for $\forall x \in R$ $S(x, \varphi)$ is a $d_G(x)$ – interval. For G and $R \subseteq V(G)$ let $w_R(G)$ and $W_R(G)$

be the least and the greatest possible value of t, respectively, for which there is an interval on R edge t t -coloring of a graph G.

2. Definitions and Terms

Definition 1. A proper edge t-coloring φ of a graph G has a (R, \overline{R}) -feature, where $\chi'(G) \le t \le |E(G)|$ and $R \subseteq V(G)$, if for each $x \in V(G)$ $S(x, \varphi)$ is an interval if and only if $x \in R$.

Definition 2. A subset $R \subseteq V(G)$ is called interval-separable subset of the set of vertices of G (or, is shorter, "interval-separable subset of G"), if there is t_0 , $\chi'(G) \le t_0 \le |E(G)|$, for which there is a proper sedge t_0 - coloring of a graph G, which has the (R, \overline{R}) - feature.

Definition 3. For a graph G and an interval-separable subset $R \subseteq V(G)$ of its vertices let $w_{R,R}(G)$ is and $W_{R,R}(G)$ be the least and the greatest possible value of t, respectively, for which there is a proper sedge t - coloring of a graph G with (R,R) - feature.

Note 1. For each graph G and the interval-separable subset $R \subseteq V(G)$ of G the following inequality holds: $\chi'(G) \le w_R(G) \le w_{R,R}(G) \le W_{R,R}(G) \le |E(G)|$

For each graph $G \in \mathfrak{N}$ and the interval-separable subset $R \subseteq V(G)$ of G the following inequality holds: $\chi'(G) \le w(G) \le w_R(G) \le w_{R,R}(G) \le w$

Note 2. If $G \in \mathfrak{N}$, we can't state that its arbitrary subset of vertices is interval-separable. It can be shown by the following

Example: Let G is a tree with $|V(G)| \ge 3$ and R is the subset of all vertices $x \in V(G)$ which satisfies the condition $d_G(x) \ge 2$. It is clear that even $G \in \mathfrak{N}$ [7], but R is not an interval-separable subset of G.

The goal of this work is finding all interval-separable subsets of the complete graphs K_p , where $p \ge 2$. All non-defined terms can be found in [1,4]. Everywhere in this work we assume that

$$V(K_p) = \{x_1, x_2, ..., x_p\}$$
. It is clear that $|V(K_p)| = p$, $|E(K_p)| = \frac{p(p-1)}{2}$, $\Delta(K_p) = p-1$.

$$\beta(K_p) = \left\lfloor \frac{p}{2} \right\rfloor \text{ and } \chi'(K_p) = \begin{cases} p-1, & \text{if } p \text{ is even} \\ p, & \text{if } p \text{ is odd} \end{cases}$$

3. Some intermediate results

Proposition 2. If $R = V(K_{2n})$ where $n \ge 1$ then for each t, which satisfies the inequality $2n-1 \le t \le 3n-2$, there is an interval on R t—coloring of a graph K_{2n} .

Proof. Follows from the corollary 1, theorems 1 and 2.

Corollary 2. For each $R \subseteq V(K_{2n})$ where $n \ge 1$ $w_R(K_{2n}) = 2n-1$.

Corollary 3. For each $R \subseteq V(K_{2n})$ where $n \ge 1$ $W_R(K_{2n}) \ge 3n - 2$.

Proposition 3. If $K = V(K_{2n+1})$ where $n \ge 1$ then for each t, which satisfies the inequality $2n+1 \le t \le n(2n+1)$, there is no interval on R t—coloring of a graph K_{2n+1} . The proof is trivial.

Proposition 4. For each $n \ge 2$ and for each $R \subset V(K_n)$ there is an interval on R (2n-3)-coloring of a graph K_n .

Proof. As the proof is trivial for the case n=2, let us suppose that $n \ge 3$. As $R \subset V(K_n)$ then without loss of generality, we may assume that $R \subseteq \{x_2, x_1, ..., x_n\}$. Let define the function $\varphi: E(K_*) \rightarrow Int(1,2n-3)$. For $\forall e \in E(K_*)$ let

$$Int(1,2n-3) \text{ For } \forall e \in E(K_n) \text{ let}$$

$$\varphi(e) = \begin{cases} 2j-3 & \text{if } e = (x_i, x_j) \text{ for which } j \in Int(2,n-1) \\ i+j-3, \text{if } e = (x_i, x_j) \text{ for which } i \in Int(2,n-2), j \in Int(3,n-2), i < j \end{cases}$$

$$(2n-2) = \text{contains of the graph } K_n \text{ as } K_n \text{ as$$

It is easy to see that φ is a proper edge (2n-3)-coloring of the graph K_a , and for $\forall i \in Int(2,n-1)$ $S(x_i,\varphi) = Int(i-1,n-1)$. Thus φ is an interval on R (2n-3) – coloring of a graph K. Proposition 4 is proved.

Corollary 4. For each $n \ge 2$ and each $R \subset V(K_n)$ $w_R(K_n) \le 2n-3$.

Corollary 5. For each $n \ge 2$ and each $R \subset V(K_n)$ $W_R(K_n) \ge 2n-3$.

Lemma 1. For each $n \ge 1$ and each proper edge (2n+1) -coloring α of a graph K_{2n+1} the following statement holds: for each $i_0 \in Int(1,2n+1)$ there is only $j(i_0) \in Int(1,2n+1)$ such that $i_o \notin S(x_{i(i_o)}, \alpha)$.

Proof. Existence follows from the fact that for each $n \ge 1$ there is no perfect matching for K_{2n+1} opposite: assume the Let us $f'(i_0) \in Int(1,2n+1), \ f''(i_0) \in Int(1,2n+1), \ f'(i_0) \neq f''(i_0)$ which satisfy the following conditions: uniqueness. Let's $i_0 \notin S(x_{j(i_0)}, \alpha), i_0 \notin S(x_{j(i_0)}, \alpha)$. As $|E(K_{2n+1})| = n(2n+1)$ and $\beta(K_{2n+1}) = n$ then for $\forall i \in Int(1,2n+1)$ $|\{e \in E(K_{2n+1})/\alpha(e) = i\}| = n$. But it's clear $\left|\left\{e \in E(K_{2n+1})/\alpha(e) = i_0\right\}\right| \le \left|\frac{2n-1}{2}\right| = n-1$. This contradiction shows incorrectness of the assumption. Lemma 1 is proved.

Lemma 2. For each $n \ge 1$ and each proper edge (2n+1) -coloring α of a graph K_{2n+1} there are i' and i", which satisfy the following conditions:

- 1) $1 \le i' \le 2n+1, 1 \le i'' \le 2n+1, i' \ne i''$
- 2) $S(x_0, \alpha) = Int(2,2n), S(x_0, \alpha) = Int(1,2n),$
- for ∀i ∈ Int(1,2n+1)\{i',i''} S(x,α) is not interval.

Proof. From lemma 1 it follows that there are the only $j(1) \in Int(1,2n+1)$ such that $1 \notin S(x_{j(1)}, \alpha)$ and the only $j(2n+1) \in Int(1, 2n+1)$ such that $(2n+1) \notin S(x_{j(2n+1)}, \alpha)$. As α is a proper edge (2n+1)-coloring of a graph K_{2n+1} and $d_{K_{2n+1}}(x_{j(1)}) = d_{K_{2n+1}}(x_{j(2n+1)}) = 2n$, then $S(x_{n(1)}, \alpha) = Int(2, 2n)$ and $S(x_{n(2n+1)}, \alpha) = Int(1, 2n)$. For completing of reasoning it's enough to assume that $i' \equiv j(1)$, $i'' \equiv j(2n+1)$. Lemma 2 is proved.

Proposition 5. For each $n \ge 1$ and $R \subset V(K_{2n+1})$ which satisfies the inequality $|R| \le 2$ $w_n(K_{2n+1}) = 2n+1$. The proof follows from the lemma 2.

Lemma 3. For each $n \ge 4$ there is a proper edge $|E(K_n)|$ – coloring α of a graph K_n , where for $\forall i \in Int(1,n) \ S(x_i,\alpha)$ is not interval.

Proof. Case 1. n = 4. It is clear that in this case edge coloring α of a graph K_n , which is defined following equalities by $\alpha((x_1,x_2))=1$, $\alpha((x_1,x_3))=2$, $\alpha((x_1,x_4))=4$, $\alpha((x_2,x_3))=5$, $\alpha((x_2,x_4))=3$, $\alpha((x_1,x_4))=6$ implies the statement.

Case 2, $n \ge 5$. Let us assume

$$E_3 = \{(x_1, x_{n-1}), (x_2, x_n)\}, \ E_4 = E(K_n) \setminus (E_1 \cup E_2 \cup E_3). \text{ It's clear that } |E_4| = \frac{n(n-1)}{2} - 2n + 1.$$
Let us a surface of the following E_1 be a surface of E_2 because E_3 and E_4 because E_4

Let us number all edges in E_a by the random order: $e[1]_a e[2]_{a}, e[\frac{n(n-1)}{2} - 2n + 1]$.

Then let us number all edges in $E(K_n)$ by the following order:

for
$$i \in Int(1, n-1)$$
 assume $e_i \equiv (x_i, x_{i+1})$

for
$$i \in Int(n, n-2)$$
 assume $e_i \equiv (x_{i-n+1}, x_{i-n+3})$

$$e_{2n-2} \equiv (x_1, x_{n-1})$$

$$e_{2n-1}\equiv(x_2,x_n)$$

for
$$i \in Int(2n, \frac{n(n-1)}{2} - 2n + 1)$$
 assume $e_i = e[i - 2n + 1]$

Now let define the function $\alpha: E(K_n) \to Int(1, |E(K_n)|)$. For $\forall i \in Int(1, |E(K_n)|)$ assume $\alpha(e_i) \equiv i$. It is easy to see that in the examined case α is a proper edge $|E(K_n)|$ —coloring of a graph K_n , which implies the statement. Lemma 3 is proved.

Proposition 6. For a graph K_n , where $2 \le n \le 3$, a subset $R \subseteq V(K_n)$ is interval-separable if and conly if |R| = 2. The proof is trivial.

Lemma 4. In the case $n \ge 4$ and $R \subset V(K_n)$, which satisfies the condition $0 \le |R| \le 1$, there is a proper edge $|E(K_n)|$ —coloring of a graph K_n with (R, \overline{R}) —feature.

Proof. Case 1. $R = \emptyset$. The proof follows from the lemma 3.

Case 2. |R| = 1. Without loss of generality, we may assume that $R = \{x_n\}$.

Case 2.1. n = 4. It is clear that the proper edge 6-coloring φ_1 of the graph K_4 , which is defined by following equalities:

$$\varphi_1((x_1,x_2)) = 4$$
, $\varphi_1((x_1,x_3)) = 5$, $\varphi_1((x_1,x_4)) = 1$, $\varphi_1((x_2,x_3)) = 6$, $\varphi_1((x_2,x_4)) = 2$, $\varphi_1((x_3,x_4)) = 3$ has the (R,\overline{R}) - feature.

Case 2.2. $n \ge 5$. Let G' is a subgraph of a graph K_n , which is induced by the subset $\{x_1, x_2, ..., x_{n-1}\}$ of the vertices of K_n . It's clear that $G' \cong K_{n-1}$. From the lemma 3 it follows that there is a proper edge $|E(K_{n-1})|$ —coloring φ_0 of the graph G', where for $\forall x \in V(G')$ $S(x, \varphi_0)$ is not interval. Let us define the function $\varphi_2 : E(K_n) \to Int(1, |E(K_n)|)$. For $\forall e \in E(K_n)$ assume

$$\varphi_2(e) = \begin{cases} i & \text{, if } e = (x_i, x_n), \text{ where } i \in Int(1, n-1) \\ n-1+\varphi_0(e), \text{ if } e \text{ is not adjacent to } x_n \end{cases}$$

It is clear that φ_2 is a proper edge $|E(K_n)|$ - coloring of a graph K_n with (R, \overline{R}) - feature.

Corollary 6. In the case $n \ge 4$ and $R \subset V(K_n)$, $0 \le |R| \le 1$ follows $W_{R,R}(K_n) = |E(K_n)|$.

Lemma 5. In the case $n \ge 4$ and $R \subset V(K_n)$, $2 \le |R| \le n-2$, there is a proper edge $(2n-3+\left|E(K_{n-|R|})\right|)$ – coloring of a graph K_n with (R,\overline{R}) – feature.

Proof. Without loss of generality, we may assume that $R = \{x_2, ..., x_{|E|}, x_n\}$. Let us assume that $E_i = \{(x_1, x_i) / i \in Int(2, |R| - 1) \cup \{n\}\}$, $E_2 = \{(x_i, x_j) / i \in Int(2, |R| - 1), j \in Int(3, n - 2), i < j\}$, $E_1 = \{(x_n, x_j) / j \in Int(|R| + 1, n - |R| - 1)\}$, $E_4 = E(K_n) \setminus (E_1 \cup E_2 \cup E_3)$.

It's clear that $|E_1| = |R|, \ |E_2| = \frac{(|R|-1)(|R|-2)}{2} + (|R|-1)(n-|R|), \ |E_3| = n-|R|-1, \ |E_4| = \frac{(n-|R|)(n-|R|-1)}{2}. \ \text{It's}$

easy to see that E_k coincides with a set of all edges of the subgraph G' of a graph K_n , which is induced by the subset $\{x_1, x_{|E_n|}, ..., x_{n-1}\}$ of the vertices of K_n . It is clear that

$$G \cong K_{n-|S|}, |V(G')| = n - |R|, |E(G')| = |E_1|, \Delta(G') = n - |R| - 1.$$

Case 1. n-|R|=2 . Let us define the function $\varphi_1:E(K_n)\to Int(1,2n-2)$. For $\forall e\in E(K_n)$ assume

$$\phi_{i}(e) = \begin{cases}
2i - 3, & \text{if } e \in E_{1} \text{ and } e = (x_{i}, x_{i}) \\
i + j - 3, & \text{if } e \in E_{2} \text{ and } e = (x_{i}, x_{j}) \\
2n - 4, & \text{if } e = (x_{i}, x_{i-1}) \\
2n - 2, & \text{if } e = (x_{i}, x_{i-1})
\end{cases}$$

It is easy to see that φ_i is a proper edge (2n-2)-coloring of a graph K_n , where for $\forall i \in Int(2,n-3) \cup \{n\}$ $S(x_i,\varphi_i) = Int(i-1,n-1)$ but the sets $S(x_i,\varphi_i)$ and $S(x_{i-1},\varphi_i)$ are not intervals.

Case 2. n-|R|=3. In the examined case it's clear that $n \ge 5$. Let us define the function

$$\varphi_2: E(K_n) \to Int(1,2n) \text{ . For } \forall e \in E(K_n) \text{ assume}$$

$$2i-3 \text{ . } \text{ if } e \in E_1 \text{ and } e = (x_1, x_i)$$

$$i+j-3, \text{ if } e \in E_2 \text{ and } e = (x_i, x_j)$$

$$2n-5 \text{ . } \text{ if } e = (x_{n-2}, x_n)$$

$$2n-4 \text{ . } \text{ if } e = (x_{n-1}, x_n)$$

$$2n-2 \text{ . } \text{ if } e = (x_{n-1}, x_{n-1})$$

$$2n-1 \text{ . } \text{ if } e = (x_1, x_{n-2})$$

$$2n \text{ . } \text{ if } e = (x_1, x_{n-1})$$

It is easy to see that φ_2 is a proper edge 2n-coloring of a graph K_n , where for $\forall i \in Int(2,n-4) \cup \{n\}$ $S(x_i,\varphi_2) = Int(i-1,n-1)$ but the sets $S(x_1,\varphi_2)$, $S(x_{n-2},\varphi_2)$ and $S(x_{n-1},\varphi_2)$ are not intervals.

Case 3. $n-|R| \ge 4$. In the examined case it's clear that $\Delta(G') \ge 3$ and $n \ge 6$. From the lemma 3 it follows that there is a proper $|E_4|$ – coloring φ_0 of a graph G', where for $\forall x \in V(G')$ the set $S(x,\varphi_0)$ is not interval. Let us define the function $\varphi_3 : E(K_n) \to Int\left(1,2n-3+\frac{(n-|R|)(n-|R|-1)}{2}\right)$. For $\forall e \in E(K_n)$ assume

$$\varphi_{1}(e) = \begin{cases} 2i - 3 & \text{if } e \in E_{1} \text{ and } e = (x_{1}, x_{i}) \\ i + j - 3 & \text{if } e \in E_{2} \text{ and } e = (x_{i}, x_{j}) \\ n + j - 3 & \text{if } e \in E_{3} \text{ and } e = (x_{n}, x_{j}) \\ 2n & 3 : \varphi_{0}(e), \text{ if } e \in E_{4} \end{cases}$$

It's easy to see that φ_3 is a proper edge $\left(2n-3+\frac{(n-|R|)(n-|R|-1)}{2}\right)$ - coloring of a graph K_a ,

where for $\forall i \in Int(2, |R|-1) \cup \{n\}$ $S(x_i, \varphi_i) = Int(i-1, n-1)$ but for

 $\forall i \in Int(|R|+1, n-|R|-1)$ $S(x_i, \varphi_3)$ is not interval and the set $S(x_1, \varphi_3)$ is not interval. Lemma 5 is proved.

Corollary 7. When $n \ge 4$ and $R \subset V(K_n)$, |R| = 2 then $W_{R,\overline{R}}(K_n) = |E(K_n)|$.

Corollary 8. When $n \ge 4$ and $R \subset V(K_n)$, |R| = n-2 then $W_{R,R}(K_n) \ge 2n-2$.

Corollary 9. When $n \ge 4$ and $R \subset V(K_n)$, |R| = n-3 then $W_{n,\overline{n}}(K_n) \ge 2n$.

Lemma 6. When $n \ge 4$ and $R \subset V(K_n)$ satisfies the condition |R| = n - 1 then there is a proper edge (2n-3) - coloring of a graph K_n with (R, \overline{R}) - feature.

Proof. Without loss of generality, we may assume that $R = \{x_2, x_3, ..., x_n\}$. It's easy to see that the coloring φ which was constructed in the proof of proposition 4 is a proper edge (2n-3) – coloring of a graph K_n , which has (R, \overline{R}) – feature. Lemma 6 is proved.

4. Main results

Theorem 3. In the case $n \ge 2$ each subset $R \subset V(K_{2n+1})$ is an interval-separable subset of K_{2n+1} . The proof follows from the lemmas 4-6.

Theorem 4. In the case $n \ge 2$ each subset $R \subseteq V(K_{2n})$ is an interval-separable subset of K_{2n} .

Proof. Case 1. $R = V(K_{2n})$. The proof follows from the proposition 2.

Case 2. $R \subset V(K_{2n})$. The proof follows from the lemmas 4-6. Theorem 4 is proved.

Corollary 10. There are graphs $G \in \mathfrak{N}$ for which each subset $R \subseteq V(G)$ of its vertices is an interval-separable.

Proposition 7. When $n \ge 2$ and $R \subset V(K_n)$, |R| = n-1 then $W_R(K_n) = 2n-3$.

Proof. In the case $2 \le n \le 3$ the proof is trivial. Let $n \ge 4$. From the corollary 5 it follows that for proving of statement it's enough to show that for $n \ge 4$ and $R \subset V(K_n)$, which satisfies the condition |R| = n - 1, the inequality $W_R(K_n) \le 2n - 3$ is right. Let us assume the opposite: there is $n_0 \ge 4$ and a subset $R_0 \subset V(K_{n_0})$ satisfies the condition $|R_0| = n_0 - 1$, such that there is an interval on R_0 edge t_0 -coloring φ_0 of the graph K_{n_0} , where $t_0 \ge 2n_0 - 2$. Let $e_1 \in E(K_{n_0})$ and $e_2 \in E(K_{n_0})$ such that $\varphi_0(e_1) = 1$ and $\varphi_0(e_2) = 2n_0 - 2$.

Case 1. e_1 and e_2 are not adjacent. Without loss of generality, we may assume that $e_1 = (x_1, x_2)$, $e_2 = (x_3, x_4)$. As $|R_0| = n_0 - 1$ so at least one of the following statements is correct:

- a) the sets $S(x_1, \varphi_0)$ and $S(x_4, \varphi_0)$ are intervals,
- b) the sets $S(x_2, \varphi_0)$ and $S(x_3, \varphi_0)$ are intervals.

Without loss of generality, we may assume that the statement a) is correct. As $S(x_1, \phi_2)$ is an

 (n_0-1) - interval and $\varphi_0(e_1)=1$, so $\varphi_0((x_1,x_4))\leq n_0-1$. From the other side, as $S(x_4,\varphi_0)$ is an

 (n_0-1) - interval and $\varphi_0(e_1)=2n_0-2$, so

 $\varphi_n((x_1,x_1)) \ge 2n_n - 2 - (n_n - 2) = n_n > n_n - 1 \ge \varphi_n((x_1,x_2))$, which is impossible.

Case 2. ϵ_1 and ϵ_2 are adjacent. Without loss of generality, we may assume that $e_1 = (x_1, x_2), e_2 = (x_2, x_3)$. In the examined case it's clear that $S(x_2, \varphi_3)$ is not interval. It implies that $S(x_1, \varphi_0)$ and $S(x_1, \varphi_0)$ are intervals. As $\varphi_0(e_1) = 1$ and $S(x_1, \varphi_0)$ is $(n_0 - 1)$ - interval, so $\varphi_0((x_1,x_2)) \le n_0 - 1$. From the other side, as $\varphi_0(e_2) = 2n_0 - 2$ and $S(x_3,\varphi_0)$ is $(n_0 - 1)$ interval, so $\varphi_0((x_1,x_3)) \ge 2n_0 - 2 - (n_0 - 2) = n_0 > n_0 - 1 \ge \varphi_0((x_1,x_3))$, which is impossible.

The contradiction shows incorrectness of the assumption. Proposition 7 is proved.

From lemma 6 and proposition 7 it follows

Corollary 11. When $n \ge 3$ and $R \subset V(K_n)$, |R| = n - 1 then $W_{R,n}(K_n) = 2n - 3$.

Corollary 12. When $n \ge 3$ and $R \subset V(K_n)$, |R| = n - 1 then $w_{R,\overline{R}}(K_n) \le 2n - 3$.

From lemma 2 it follows

Corollary 13. When $n \ge 1$ and $R \subset V(K_{2n+1})$, |R| = 2 then $w_{R,\bar{p}}(K_{2n+1}) = 2n+1$.

Proposition 8. When $n \ge 2$ and $R \subset V(K_{2n+1})$, $0 \le |R| \le 1$ then $w_{R,\overline{R}}(K_{2n+1}) = 2n+2$.

Proof. From the equality $\chi'(K_{2n-1}) = 2n+1$ and lemma 2 it follows that for proving of the statement it's enough to show that for $n \ge 2$ and $R \subset V(K_{2n+1})$, which satisfies the condition $0 \le |R| \le 1$, there is a proper edge (2n+2) – coloring of the graph K_{2n+1} with (R, \overline{R}) – feature.

Case 1. |R| = 1. Let $R = \{x\}$. From the lemma 2 it follows that there is a proper (2n+1) –coloring α_1 of the graph K_{2n+1} such that there is a vertex $x \in V(K_{2n+1})$ for which the following statements are correct:

- 1) $S(x,\alpha_1) = Int(1,2n), S(x,\alpha_1) = Int(2,2n),$
- 2) for $\forall x \in V(K_{2n+1}) \setminus \{x, x\}$ $S(x, \alpha_1)$ is not interval.

It is clear that $\exists x' \in V(K_{2n+1})$ such that $\alpha_1((x,x')) = 2n+1$. As $S(x,\alpha_1) = Int(1,2n)$ so $x' \neq x$. Let us define the function $\varphi_1: E(K_{2n+1}) \to Int(1,2n+2)$. For $\forall e \in E(K_{2n+1})$ assume

$$\varphi_{i}(e) = \begin{cases} \alpha_{i}(e), & \text{if } e \neq (x, x') \\ 2n + 2, & \text{if } e = (x, x') \end{cases}$$

As α_1 is a proper edge (2n+1) -coloring of the graph K_{2n+1} and the equalities

 $\chi'(K_{2n+1}) = 2n+1$, $\beta(K_{2n+1}) = n$, $|E(K_{2n+1})| = n(2n+1)$ hold, so

 $e \in E(K_{\gamma_{n+1}}) \setminus \{(x,x')\}/\varphi_1(e) = 2n+1\} = n-1 \ge 1$. This and the definition of φ_1 imply that φ_1 is the proper edge (2n+2) - coloring of the graph K_{2n+1} which has (R,R) - feature.

Case 2. $R = \emptyset$. Let α_2 be a proper edge (2n+1) – coloring of the graph K_{2n+1} . From the lemma 2 it follows that there are i' and i" which satisfy the following conditions:

- 1) $1 \le i' \le 2n+1, 1 \le i'' \le 2n+1, i' \ne i''$,
- 2) $S(x_1,\alpha_2) = Int(2,2n), S(x_1,\alpha_2) = Int(1,2n),$

3) for $\forall i \in Int(1,2n+1) \setminus \{i',i''\}$ $S(x_i,\alpha_2)$ is not interval.

If it is clear that $\alpha_1((x_r,x_r)) \neq 2n+1$, $\alpha_2((x_r,x_r)) \neq 1$.

Case 2.1. $\alpha_2((x_r, x_r)) \neq 2$. Let us define the function $\varphi_2: E(K_{2n+1}) \rightarrow Int(1, 2n+2)$. For

$$\forall e \in E(K_{2n+1}) \text{ assume } \varphi_2(e) = \begin{cases} \alpha_1(e), & \text{if } e \neq (x_i, x_i) \\ 2n+2, & \text{if } e = (x_i, x_i) \end{cases}$$

As α_2 is a proper edge (2n+1) -coloring of the graph K_{2n+1} and the equalities

$$\chi'(K_{2n+1}) = 2n+1$$
, $\beta(K_{2n+1}) = n$, $|E(K_{2n+1})| = n(2n+1)$ hold, so

$$|\{e \in E(K_{2n+1}) \setminus \{(x_i, x_i)\}/\varphi_2(e) = \alpha_2((x_i, x_i))\}| = n-1 \ge 1$$
. This and the definition of φ_2 imply that

 φ_2 is the proper edge (2n+2) - coloring of the graph K_{2n+1} which has (R,\overline{R}) - feature.

Case 2.2. $\alpha_3((x_r, x_r)) = 2$. Let us define the function $\varphi_3 : E(K_{2n+1}) \to Int(1, 2n+2)$. For

$$\forall e \in E(K_{2n+1}) \text{ assume } \varphi_1(e) = \begin{cases} 1 + \alpha_2(e), & \text{if } e \neq (x_r, x_r) \\ 1, & \text{if } e = (x_r, x_r) \end{cases}$$

As α_2 is a proper edge (2n+1) - coloring of the graph K_{2n+1} and the equalities $\chi'(K_{2n+1}) = 2n+1$,

$$\beta(K_{2n+1}) = n, \ |E(K_{2n+1})| = n(2n+1) \text{ hold, so } |\{e \in E(K_{2n+1}) \setminus \{(x_r, x_r)\} / \varphi_3(e) = 3\}| = n-1 \ge 1. \text{ This}$$

and the definition of φ_3 imply that φ_3 is the proper edge (2n+2) - coloring of the graph K_{2n-1} which has (R, \overline{R}) - feature. Proposition 8 is proved.

References

[1] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.

[2] V.G. Vizing, The chromatic index of a multigraph, Kibernetika 3, pp. 29-39, 1965.

- [3] A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph, Appl. Math 5, Yerevan State University, pp 25-34, 1987.
- [4] R.R. Kamalian, Interval Edge-Colorings of Graphs, Doctoral Dissertation, The Institute of Mathematics of the Siberian Branch of the Academy of Sciences of USSR, Novosibirsk, 103p, 1990.
- [5] R.R. Kamalian, P.A. Petrosyan, On lower bound for W(K_{2n}), Mathematical Problems of Computer Science, Vol.23, pp 127-129, Yerevan, 2004.
- [6] P.A. Petrosyan, Interval color-feasible sequences for some classes of graphs, PhD thesis, Institute for Informatics and Automation Problems of NAS of RA, Yerevan, 130 p, 2006.
- [7] R.R. Kamalian, Interval colorings of complete bipartite graphs and trees, Preprint of the Computing Centre of the Academy of Sciences of Armenia, 11p, 1989.

Lրիվ գրաֆի գագաթների բազմության միջակայքայնորեն՝ առանձնացվող ենթաբազմությունների մասին

Հ. Առաքելյան Ռ. Քամալյան

Ամփոփում

G գրաֆի գագաթների բազմության R ենթաբազմությունը կոչվում է միջակայքայնորեն առանձնացվող այն և միայն այն ժամանակ, երբ գոյություն ունի G գրաֆի այնպիսի ճիշտ կողային ներկում, որ կամայական x գագաթին կից կողերի գույները կազմում են բնական թվերի բազմության մեջ միջակայք այն և միայն այն դեպքում, երբ $x \in R$ ։ Գտնված են լրիվ գրաֆի գագաթների բազմության բոլոր միջակայքայնորեն առանձնացվող ենթաբազմությունները։ Նկարագրվել են առաջարկված կանոնի կիրառության արդյունավետությունը ցուցադրող համապատասիան պատկերներ և թվային արդյունքներ։