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Abstract ;
A representation of two-dimensional random vecior bivariate distribution by wl'li:;::
*’F"Pﬂdhlkm'hmmdmmubutqmiziuhrthemtm"
regression function and the bounds for the Spearman rank correlation coefficlent are
derived.

1 Introduction

Definition and comparison of several nonparametric measures of dependence h.;lm:cn fan
dom vector components is one of the important problems of the risk theory in financia;
mathematics and medicine. Recently the model of multivariate distribution function, pre
sented by copuls, has been used for this goal by many authors. In mathematical werms &
copula C'(ky, ... tg) is any multivariate distribution with K uniformly distributed marginak :
on [0,1]. The representation of multidimensional distribution function of a random ‘\'wtur -
K-copulas allows to define a joint dependence measure between its component which is free
from influence of one-dimensional marginal distributions. As it was shown in monograpia
of Joe (1] as well as by Schweizer and Wolff in [2] such measures can be presented in the
form of various functionals from the difference C(uy, ..., ux) = N Up. An interesiing tasks
for practical applications is refinement of these measures in so called threshold models wh_
K-variate distribution function is assumed heterogeneous, which means that, it changes alteg
attaintion by categorizing variable of certain specific threshold. The works of Fmbrechts,
McNeil and Strauman [3], Lausen and Schumacher [4], Safaryan, Haroutunian and Man<;
asyan |?] and others can be mentioned in this direction. We study the copula of a bivariate!
vector (X,Y) lor cases when the categorizing variable X can have one or two thresholds,
The regression function E(Y|X = r) and bounds for Spearman’s rank correlation coeffiient
will be derived too. |

2 Definition of Threshold Dependence Models

Let (X,Y) be a random vector with a joint distribution function (DF) Fyy (2, ) and cons
tinuous marginal distributions Fx(z) and Fy(y) . ]

Definition 1. We call random variable (RV) ¥ homogeneous with respect 1o RV X, if}
for all pairs (x,y) on the plane the following conditional probabilities are equal: i

PHY <ylX <2) = Pe(Y <yIX > 2). al
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It can be shown [4] that the homogeneity and statistical independence of RVs X and ¥ are
equivalent notions. Otherwise Y is called heterogeneous with respect to X, which in that
case s called a separating variable for Y. The violation of (1) leads to different modeis of
bivariate d»pendm We will consider the simplest. cases, when the violation of relationship
h; COLUrs in GNc OF tWD m

Definition 2. If there exist a unique value z = p such that for all y € R,

Pr(Y <ylX<z)=Pr(Y <ylX <p) for z<p, (2
PY SyiX >z)= Pr(Y <ylX >p) for z>p, (3)
s Pr(Y <ylX <) # Pr(Y <ylX > p), (4)

then the statistical dependence between X and Y is called one- threshold, and the value

is called the threshold.
Definition 3. If there exist no more than two values z = y; and z = p, (1 < ;) such

that for all y € H

PHY SylX <z)= Pr{Y <ylX <) for z<p, (5)
PrlY <ylm <X <z)= PY Syl <X <) for m<z<p,  (6)
Pr(Y <ylX>z)= Pr(Y SylX>m) for z>p, ™

and ;
Pr(Y <ylm < X <2) # Pr(Y <yl < X < ), (8)
Pr(Y <yl < X < ) # Pr(Y S y|X > ), ©)

then the statistical dependence between X and Y is called two-threshold and values y; and
iz ere called thresholds.

In similar way M-threshold dependence with M > 2 can be define . Let us note that
il'Y = g(X), where g is some continuous function, then the equality (1) is violated for any
point (z,y) on the plane.

3 Representation of Threshold Dependence Structure by Copula

It is known [2] that for arbitrary bivariate DF Fy,y(z,y) with continuous marginal DFs
Fx(z) and Fy(y) there exists unique copula Cx.y such that

Fyy(z,y) = Fxy(Fx'(Fx(z), Fy'(Fy(y)) = Cxy(Fx(z), Fy(y)).

Definition 4. One say that two random vectors (X,Y) and (X',Y’) have the same
dependence structure if their bivariate distributions corresponds to the same copula.

Ry substituting different. pairs of marginal DFs in some definite copula (. ») we can
obtain different bivariate DFs with the same dependence structure.

Bellow we will obtain the representation by copula of one-threshold and two-threshold
dependence structures.

One-threshold case,

Consider the following conditional DFs Fyjx=-(y) = Pr(Y < y|X = z), Fyix<:(y) =

Pr(Y < y|X < z) and Fyjx>:(y) = Pr(Y < y|X > 2). And let p = Fy(u) he the level

corresponding to the quantile u of RV X.
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Theorem 1: HRVs Xand Y MMWG
Mrenmm&jdethmdubm
Feylzg) = Fx(@FR®) + (Frixs ) - Fy x> (9))(min{Fx{z).p) = P
i la meels.
I'nis formula allows to derive the equation o which m:\wu ot

Proof: The conditional DFs Fyix<.(y) and Frovss n be .
DF Fyxy(z,y) and marginal DFs Fx(z) and Fy(y) in the following way

o
-{4)

!

Friz)

1

(i

Let us derive the
(11) and taking i

Frixeely) = Fxy(®y)/Fx(z),
Fruss(®) = (Fr(y) = Fxy{z )/ (1 - Fx(2).
According to Definition 2 Fy!xg{y} = Fyxsulw) for all x & e
for Fyix<:(y) for the case > p. By substituting (12) into
account (3) we obtain that

Fyixes(y) = Fxy (i 0)Fx(p)/Fx (2) Fx(p)+

+(Fxylz,p) — Fyly) + () = Fxy U o))/ Fx(z) =

Fx(p) . (Fxy(zp) = Fr(u)(l - Fx(z))
FraWEG ™ (-R@K®

_(Fy(v) = Fx (. 9))(1 = Fx(u)) _
v (1 = Fx(z))Fx(z)

Fx(g) 1=Fx() . o oy 1=Fxl)
Fif;.\'sp(lr]m—ﬂ!x»w Frx(@) + B =

= Fyixse(t) + (Frix<a(®) = Frixsu(W) Fx(u)/Fx (). (13)

If the components of vector (X, Y") satisfy conditions (2)-(4), then, as it was remarked
in [6], the marginal DF of ¥ can be represented as a mixture of two conditional DFs:

Fy(v) = Fyrix<a(¥)p + Frixsu(v)(1 = p). (1)
By substituting (13) and (14) into (11) we obtain that

(Frixcals) = PressO)( =Pk, 25 b
Boriat) = DSt { (Bverls) = BN =Fe@p -~ = > b

The last expression is equivalent to (10) and so the Theorem 1 is proved. .
It is by Schweizer and Wollf [2] that for any copula C'(«, v) including the independence
copula following inequalities hold: .
C™ () £ C(u,v) < C™(u,v). (15)

We shale use following notations for three special copula : i|
C%(u,v) = uv the copula of independence, C*(u,v) = min(u,v) the upper boundary for
copulss, C'~(u,v) = max((u 4+ v - 1),0) the lower boundary for copulas. This inequality
provides opportunity to specify the type of random vector (X,Y) dependence structure
according to the disposition of its copula and the independence copula.Thos, if the surface
x = Cyy(u,v) is between the surfaces = = C%u,v) and = = C*(u, ) then RV X and ¥ are

. called in accord with definition given by I1. Joe (1] positive quadrant dependent (PQD).
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The following corollary of Theorem 1 allows to obtain the upper and lower bounds for
copula of vector (X, Y) with one-threshold dependence.

Corollary 1: The dependence structure of random vector (X.Y ) with two-dimensional
DF (10) is defined by a copula Cx,y (u, v) satisfying the following equation:

Cxy(u,v) = C%(u,v) + (Cx,y (p,v) — pu)(C™(u, p) — pu)/p(1 — p). (16)
while the upper and lower bounds of such copula are the following:

Cy(u,v) = C%u,v) + (C™(p,v) — pv)(C*(u, p) — pu))/p(1 — p), (17)

Cx.y(u,v) = C%(u,0) + (C~(p, ) — pv)(C*(u, p) — pu))/p(1 — p). (18)

Proof: Let us remark that the second factor in the right part of (10) is equel to
(C*{u, p) — pu), while the first factor has the representation of the form

Fyix<u(W) — Frixsu(y) = (Fxy (i y) — pFr(y))p(l = p) =

= (Cx,y(p,v) — pv)/p(1 - p).

By substitution of the last expression in (10) we obtain (16). The expressions for the upper
and lower bounds for the copula satisfying equality (10) are derived by substitution of (15)
into (16).

On Fig.1 the upper bound for the copula of RVs X and Y satisfying one-threshold de-
pendence are presented. On Fig. 2 diagonal sections of surfaces z = C*(u,v), z = C%u. v)
and z = C%y(u,v) presented.

Figure 1: The upper bound for the copula of random vector with one-threshold
dependence of components,in case p = 0.5 :
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Figure 2: Dhaoulnctiouofi.udemdemwuh(n}. upper bound v
o(mpu!as{b).mduppaboundo!mthmholdmpubnnmp—n.s (c)-

Two-threshold case. ;
Let py = Fx(u) and py = Fx(ua) be two levels corresponding to quantiles s < #2 ol

R iti a) under
Theorem 2: 1f RVs X and Y satisiy two-threshold dependence conditions (5) (¥
thresholds = : By n.n; z = g (1 < pa), then their joint distribution function can be

presented as follows:
Fry(5.y) = Fx(x)Fy () + (min(Fx(2), ) - pFx @) (FO (W) - FO@u)+

+(min(Fx(z), p2) = pFx (@) (FO(y) - FO (), (19)

where F‘“{y} - F‘I"l!’Sm(’)- Fﬂ){y} - anr.xsyg(ﬂ}- F‘m(l\') - FYIN‘»M(.")- ‘

Proof: Since Fyy(z.¥) = Frixs:(®)Fx(z) and Fyjx<a(y) = Frixsa(u), then we shall
derive the expression for Fyx<:(v) for the cases yy < < iz and T > pa. For y <r < jip
we obtain that

Fxy(@y) _ Fxy(n.w)Fx(m)  (Fxy(®y) = Fxy (e, ) (Fy(x) - Fx(m)) _

Fusd) =5 = “R@Exm) .. Fx@(Fx(@ - Fx(m))
_FOp  PY Syl <X S 2} (Fylz) —p) .
Fy(z) Fx(x)
_ P | FOGNE@) =) _
Fx(z) Fx{z)
& (FO(y) — FO )P ;
~ F‘“(y} - _—ﬁ:f;j_._ (20)

For x > ji3 we have that

: o Fxyla,u) + Fxy(mw) = Fxy(m,v) + Fxy(paw) = Fxy (pa, )
Fyix<:u) = Fr() -
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= FOWip + FOy) (5 — p1) + FO)(1 — pr) - FO)(1 = Fr(z))
H Fx(z) ™

FOp, _ FOUW)m—m) _paFOy) _

Fxlz) Fxlz) Fx(z)

2 n(F(y) - FO(y)) | pa(F{y) = FO(y))
= FO(y) + Fx@) + Fe3) , (21)

If conditions (5)-(9) holds, then DF of Y can be presented as follows:
Fy(y) = FOy)py + FOy)(p2 — p1) + FO(y)(1 - py). (22)
Thus from (20), (21) and (22) we obtain that

Fxy(z,y) = Fx(z)Fy(y)+

p(FM(y) = FAy))(1 - Fx(z)) + (1 - p2)(FA(y) — FO(y))Fx(z), s < 7 < pa,

{ (1 = p)(FO(y) — FD(y))Fx(z) + (1 - p)(FD(y) — FO(y)Fx(z), z < y,
+
p(FO(y) — FA(y))(1 - Fx(z)) + pa(FD(y) = FO(y))(1 - Fx(z)), z > pa.

(23)
The statement of the theorem immediately follows from the last express. The partial case
of two-threshold model presents interest for medical applications, namely the case F(1)(y) =
F®(y) called “epidemic”. Providing X is the time variable, then thresholds y; and u,
correspond to the times of start and end of epidemics.
Corollary 2: The dependence structure of random vector (X, ¥) with two-dimensional
DF (19) is defined by a copula Cy,y(u, v) satisfying Lthe equation

Cx‘y(ﬂ, ’IJJ = uy + (PRCX.Y(PI‘”) - p1Cx'y{pz,v})c+(tl. U)fp] (p2 — m+
+(Cxy (P2, 0)(1 = p2) — v(p2 — 11))C™ (4, v) /(2 — p1)(1 — p2) (24)
and the upper and lower bounds of such copula are

Chylun) = S0 m) | (o)l ‘mﬁj;;ﬁ;‘;‘})0+‘“"”’. (25)
Oy (t49) = C‘(m.vi)’?"'(u.m) 4 (C(pv)(0 (—mm_);l;{(fz_;?))c‘*(m,m)‘ (26)

The proof is similar to the one of Corrolary 1. One can expect, that under certain conditions
the boundary (25) be upper the boundary (12), while the boundary (26) below the boundary
(18), i. e. the two threshold dependence is stronger than one-threshoid.

4 Correlation and Regression in Threshold Models

Since any copula is some surface in & unique cube, then the measure of deviation from
. independence, as it was shown in [2] can be expressed with some functional from difference
Cx.y(u,v) and C% y (u, v) having the meaning of distance in three dimensional space. One of
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expressad
sach functiouals #(X. ") the coeficient of ‘
with copula in the following way {2k

1
sx=12[ f (Coxy (1) = Chy(m v))dude.
4 :

come to the following:
coefficient in caso of one

integrating (17) and (18 the intcrval [0, 1] by u and v we
BrCamlIlryg. '}hhsunakmﬁm r.hESpurmln'smakmmh!inn
threshold dependence structure {10) are determined by mequahities:

The maximal value of these bounds is achieved by p = 0.5. Hence, for bi
mamtlo)w'sm&mmmmwem«! in moéu_lt b
We will prove that the obtained estimates are rather coarse since under .r.omin: mn: of one-
threshold dependence (2) - (nmwnlmbumm-' X and Y is missed. We will
mtmnutummmmwmmdrm.\'. =3

Theorem 3: If conditional DF Fyxe.(y) is differentiable by x then the regression
function E(Y1X = ) is either constant or step function with a jump on the threshold
I=H.

;rool‘: Let us prove that the relation between the conditional distributions Fy x <=(¥)
and Fyyx=«(y) is defined by the relation

Frixea®) = Frixssl) + (@) geFrives 1))/ x(2). (@ |

We denote two-dimensional density function by

fxy(z.u)= a—FJ—;-i-“F-f—y-l

then the conditional distribution functions can be expressed as
Fyix=sly) = Jim PrlY Syle< X Sx+h) =

zih

= ;I_'Eo( ] ?hfx.t‘(t. z)dtdz/ f Sx(tdr) ~

= f Sxy(x.2)ds/ [x(@). ' 3

: z
Fyixmelt) = En o (5,0)/Falz) = f ] [xalt, s)duds/Fx(x).
-0 ~20
?é;;ﬁﬁmtiuing the last expression on z and substituting it into previous identity we derive
éince for all x < p we have Fyjx<:(y) = Fyjx<u(y), then 25 01 thhe
interval, Under 2 > p the following equality s troe: b Frixedw)

F}’IXSIW) = F‘}-p’;u{ﬂ) S (F"ixs“(y) — Fle”(v))Fx (”)F-\' (:}‘
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Consequently
: Fx(p)fx(z)
Jxz) .

By substituting expression for %Fmﬁ,(ﬂ) under z < y and z > p in (23) we obtain

a L
EFYEXS:{U} = —(Fyix<(y) = Frixsu(y))

_ | Brxauly), 254,
Frx=(y) = { Frixsuly)y 2> p

Thus

-0
+o I viFyrix<,(y) = kb1, z<p,
EYIX =2)= [ ydFyxaalt) ={ 2
- i), ﬂdFY;X:m(y) =k, z>p
i

If constants k; and k; coincide, then E(Y|X = z) is constant, otherwise k; # ks. then it
is stepwise constant with jump at z = pu.

Let us note, that the coincidence of constants k; and k; is connected with the type of
difference of eonditional DFs Fyx<,(y) and Fyyx>,(y). For example in case of difference in
shift, Le. if

Fypesuly) = Frix<uly—a), a>0,

the inequality k; < k; is true. In case of scale difference Fyxs,(y) = Fyix<.((1 + a)y).
ky = k; under condition that Fyjx.,(y) and Fyjx<.(y) are symmetrical with respect to
origin (i.e. F.(y) =1- F.(-y)) DF.

5 Conclusion

The threshold dependence models are often observed in real research. Meanwhile sampling
correlation coefficients of Pearson and Spearman revealed to be sufficiently high and the
linear regression built on observed data is significant. It is so called “false” regression. To
obtain an adequate regression dependence it is necessary to test the homogeneity of response
with respect to predictor. The methodology for such testing is described in [4], [5] and [6).
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